• 제목/요약/키워드: southern Yellow Sea

검색결과 174건 처리시간 0.021초

The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, Their Impact on the Distribution of Zooplankton in the Southern Yellow Sea

  • Wang, Rong;Zuo, Tao
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.1-13
    • /
    • 2004
  • The Yellow Sea Warm Current (YSWC) and the Yellow Sea Cold Bottom Water (YSCBW) are two protruding features, which have strong influence on the community structure and distribution of zooplankton in the Yellow Sea. Both of them are seasonal phenomena. In winter, strong north wind drives southward flow at the surface along both Chinese and Korean coasts, which is compensated by a northward flow along the Yellow Sea Trough. That is the YSWC. It advects warmer and saltier water from the East China Sea into the southern Yellow Sea and changes the zooplankton community structure greatly in winter. During a cruise after onset of the winter monsoon in November 2001 in the southern Yellow Sea, 71 zooplankton species were identified, among which 39 species were tropical, accounting for 54.9 %, much more than those found in summer. Many of them were typical for Kuroshio water, e.g. Eucalanus subtenuis, Rhincalanus cornutus, Pareuchaeta russelli, Lucicutia flavicornis, and Euphausia diomedeae etc. 26 species were warm-temperate accounting for 36.6% and 6 temperate 8.5%. The distribution pattern of the warm water species clearly showed the impact of the YSWC and demonstrated that the intrusion of warmer and saltier water happened beneath the surface northwards along the Yellow Sea Trough. The YSCBW is a bottom pool of the remnant Yellow Sea Winter Water resulting from summer stratification and occupy most of the deep area of the Yellow Sea. The temperature of YSCBW temperature remains ${\leq}{\;}10^{\circ}C$ in mid-summer. It is served as an oversummering site for many temperate species, like Calanus sinicus and Euphaisia pacifica. Calanus sinicus is a dominant copepod in the Yellow Sea and East China Sea and can be found throughout the year with the year maximum in May to June. In summer it disappears in the coastal area and in the upper layer of central area due to the high temperature and shrinks its distribution into YSCBW.

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

가을철 황해 남부의 중형동물플랑크톤 분포 (Mesozooplankton Distribution in the Southern Yellow Sea in Autumn)

  • 김가람;강형구
    • Ocean and Polar Research
    • /
    • 제41권4호
    • /
    • pp.251-263
    • /
    • 2019
  • We investigated the mesozooplankton community structure during autumn in the southern Yellow Sea. Mesozooplankton density generally ranged from 352 to 2,954 ind. m-3 and varied according to different sampling stations. The copepod Paracalanus parvus s.l. and its copepodites dominated in the communities, corresponding to 57.3% in density of the total. Surface and water-column averaged salinity were positively correlated with density of total mesozooplankton, copepods and a few dominant species, and the tunicate Thalia rhomboides was negatively related to chlorophyll-a concentration. The mesozooplankton community of the study area was divided into three groups according to the cluster analysis using species composition and density: one in the northern coastal region, another in the northern offshore region, and the other in the south. The most significant indicator species for each of the groups were Labidocera euchaeta in the northern coastal region, T. rhomboides in the northern offshore region, and Themisto sp. juveniles in the south. This study provides recent data on the characteristics of the mesozooplankton community in the southern Yellow Sea, which may be valuable for gaining a better understanding of changes in the pelagic ecosystem of the Yellow Sea.

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

한국해역의 식물플랭크톤의 연구. IV. 동해, 남해 및 서해해역의 식물플랭크톤 (Phytoplankton Studies in Korean Waters. IV. Phytoplankton in the Adjacent Seas of Korea)

  • 최상
    • 한국해양학회지
    • /
    • 제4권2호
    • /
    • pp.49-67
    • /
    • 1969
  • A quantitative phytoplankton study in Korean waters was commenced in 1964 as a part of the primary production studies of Koreans seas, and it was continued with the cruises for Cooperative Studies of the Kuroshio(C.S.K) in 1965-1968. Phytoplankton samples were taken by dipping about 500ml of sea water from the surface, and then fixed by ading neutralized formlin. This report deals with the results obtained during 1965-1966. I examined a total of 298 samples of surface phytoplankton collected in the wate neighboring Korea in the above-mentioned period, and detected 147 species of diatoms and 22 species of dinoflagellates. Among them 123 species of diatoms and 18 species of dinoflagellates occured in the Japan Sea region, 133 species of diatoms and 11 species of dinoflagellates occured in the Korea Strait region, and 49 species of diatom and 8 species of dinoflagellates occured in the Yellow Sea region. And thd phytoplankton standing crops are dept in a fair abundance in the Japan Sea area all the year round, and are poor in the Yellow Sea area. The seas surrounding Korea are divided into seven regions by the planktological characteristics; northern and southern parts of the Japan Sea, eastern, western and southern parts of the Korea Strait, southern and northern parts of the Yellow Sea. The representative of the phytoplankton community in each sea region is generalized as follows; northern part of the Japan Sea is dominant with Chaetoceros group, southern part of the Japan Sea is dominant with Chaetoceros group and Skeletonema costaum, eastern part of the Korea Strait is dominant with Chaetoceros group and Pleurosigma sp., southern part of the Korea Strait is dominant with Chaetoceros group and Rizosolenia group, western part of the Korea Strait is most poor in phytoplankton, southern part of the Yellow Sea is dominant with Pleurosigma sp. and Coscinodiscus group, and northern part of the Yellow Sea is dominant with Pleurosigma sp. and Eucampia zoodiacus. Chaetoceros curvisetus, Leptocylindrus danicus, Pleurosigma normanii, Thalassionema nitzschioides, Thalassiothrix flauenfeldii appeared all the year round in the neighboring sea of Korea. There were 24 species (18 species of diatoms and 6 species of dinoflagellates) of the pecuriar phytoplankton in the Japan Sea, 27 species (25 species of diatoms and 2 species of dinoflagellates) of that in the Korea, and 7 species (5 species of diatoms and 2 species of dinoflagellates) of that in the Yellow Sea, respectively.

  • PDF

Vertical Migration of Sound Scatterers in the Southern Yellow Sea in Summer

  • Lu, Lian-Gang;Liu, Jianjun;Yu, Fei;Wu, Wei;Yang, Xiaodong
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Acoustic volume backscattering strength data were collected and Conductivity Temperature Depth (CTD) measurements were conducted in the southern Yellow Sea in summer 2005 and 2006. The high temporal and vertical resolution acoustic data measured with a 307 kHz Acoustic Doppler Current Profiler (ADCP) and a 250 kHz acoustic Doppler profile (ADP) had dominant diel variation, which resulted from vertical migration of sound scatterers. Some scatterers congregating in the bottom layer in the daytime migrated upward at dusk, and migrated downward into the bottom layer at dawn. The migration speeds were estimated. More than 33 days data show that the diel migration varies with time. The feature of migration measured with ADCP and ADP is consistent to some extent with what is described in the study on vertical migration of zooplankton in the southern Yellow Sea with conventional net samples.

韓國 南海의 水溫과 분의 變動係數 (THE VARIATION COEFFICIENT OF WATER TEMPERATURE AND SALINITY IN THE SOUTHERN SEA OF KOREA)

  • 김복기
    • 한국해양학회지
    • /
    • 제17권2호
    • /
    • pp.74-82
    • /
    • 1982
  • 1968-1980年의 韓.日共同海洋調査點中 韓國側 63個定點의 海洋調査資料를 使用하여 月別 水溫 및 분의 變動係數를 分析 硏究한 缺課의 要約은 다음과 같다. 變動係數는 水溫과 분의 前線域이나 혹은 躍層形成海域에서 크게 나타났다. 水溫의 變動係數는 각 水塊의 勞力이 가장 强한 時期에 最大値를 나타냈다(對馬 暖流와 黃海暖流域의 夏季 中層에서, 南海岸沿岸水 및 西海南部域의 冬季의 全層 에서 最大). 鹽分의 變動係數는 東支那海 低鹽水의 影響을 많이 받는 夏季에 暖流系水의 表層水에서 크게 나타나며, 沿岸水 및 西海南部域에서는 暖流系水値의 1/2정도였다.

  • PDF

황해남부의 역풍류에 대한 단순 이론 모델 (A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea)

  • 박용향
    • 한국해양학회지
    • /
    • 제21권4호
    • /
    • pp.203-210
    • /
    • 1986
  • 선형, 평행 수송모델을 세우고 이상적인 항해에 적용하였다. 이 간단한 해석 모델로서 지금 까지 예지되어 온 황해 남부의 역풍류 현상을 적절히 설명할 수 있 다. 수심이 임계수심(본모델 바다에서는 Hc=53m임)보다 깊은 해역에서는 압력 경도 력이 바람응력보다 우세하여 역풍류를 야기시킨다. 추정된 역풍류 속도는 풍속과 함께 증가하며 최대 역풍류는 황해의 깊은 골을 따라나타난다. 하계의 전형적인 남 풍속도 5-10노트에 대해서 황해골을 따른 역풍류(남향류)속도는 1-5cm s$^{-1}$로 추정된다. 반면에 동계의 전형적인 북풍속도 10-15노트에 대해서는 역풍류(북향류) 속도는 5-12cm s$^{-1}$ 이다. 이와 같은 속도 범위는 각각 하계의 황해 저층냉수 와 동계의 황해난류의 잠입속도에 대한 개략적인 추정치로서 사용될 수 있다.

  • PDF

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.

Anisakis 류에 관한 연구 (I) 각종 해산어에 있어서의 Anisakis류 유충의 분포 (Studies on Anisakis spp. (I) On the infection rate of Anisakis-like larvae isolated from various marine fishes.)

  • 전세규;정부관;류봉석
    • 한국수산과학회지
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1968
  • Formerly T. Nishimura, T. Oshima and M. Otsuru studied on Anisakis-like larvae in the various marine fishes from the Japan Sea and the Pacific Ocean. In the present observation, many kinds of marine fishes from the Yellow Sea and the southern coast of Korea were. studied, with the samples from the islands: Eocheng-do, Sohuksan-do, Chuja-do and Keomun-do. The authors examined 313 samples from the adjacent waters of Korea and the distribution of the Anisakis-like larvae in the fish body was found to be 9,219 larvae of Anisakis-like larvae found in the mesentery and coelomic cavity of all samples. Of them, 8,112 Anisakis-like larvae were found from 187 samples from the southern coast of Korea, 1,107 Anisakis-like larvae were found in 126 samples from the Yellow sea (Tables 1 & 2). The fish from the southern coast of Korea are much more infected than the fish from. the Yellow Sea. The larger the fish length, the heavier infection of Anisakis-like larvae were observed.

  • PDF