• Title/Summary/Keyword: source-basin

Search Result 361, Processing Time 0.031 seconds

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

Tectonics, sedimentation, and magmatism of the Cretaceous Gyeongsang (Kyongsang) Basin, Korea: Integrated approach to defining basin history and event mineralization

  • Chang, Ryu-In;Park, Seon-Gyu;Meen, Wee-Soo;Lee, Sang-Yeol
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.27-31
    • /
    • 2003
  • During the past decade, integrated stratigraphy has been effectively applied to many sedimentary basins to analyze stratigraphic response to tectonic evolution. This application has been beneficial to hydrocarbon exploration in the basins because it provides a better understanding of temporal and spatial relationships of hydrocarbon source and reservoir rocks as a function of basin evolution. Like the maturation, migration, and trapping of hydrocarbons, ore-forming processes in hydrothermal deposits may be causally linked to particular phases of basin evolution. Consequently, applying integrated stratigraphy to mineral exploration may be a logical and helpful approach to understanding ore-forming processes and predicting their occurrence, location, and origin. (omitted)

  • PDF

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

A System Dynamics Model to Analyze the Effects of Investments for Improvement of Environmental Conditions in Nak-Dong River Basin (낙동강 유역 환경개선 투자 효과 분석을 위한 시스템다이내믹스 모델)

  • Park, Suwan;Kim, Kimin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.561-569
    • /
    • 2016
  • In this paper a concept of the paradigm shift in the operations of Water and Wastewater systems regarding the production and usage of water was introduced. Based on this concept the interrelationships between the water quality in the upper basin of NakDong River relative to Busan and the degree of satisfaction of the customers on the water supply service in Busan were modeled using the System Dynamics modeling methodology. SamRangJin basin area was determined as the upper basin of Busan after analyzing the relationships between the water quality of MoolGeum water intake point and water quality data of various mid- and upper water intake points along NakDong River. The amount of contaminants generated in SamRangJin basin was modeled using the Gross Regional Domestic Product in the area and the treated amount was calculated using the efficiency of wastewater treatment and the degree of improvement of environmental condition per investment. The water quality at MoolGeum water intake point was modeled to take the effects of the remaining amount of contaminants after treatment and the non-point source contaminants in SamRangJin basin. Using the developed System Dynamics model the effects of the investment for the improvement of environmental condition in SamRangJin basin were compared to the case of alternate water source development for Busan in terms of the degree of satisfaction of the customers on the water supply service in Busan.

Development and Application of the Grid-Distributed Model for Contribution Rate Analysis on Non-point Source Pollution According to Landuse (토지피복별 비점부하량 기여율 해석을 위한 분포형 모델 개발 및 적용)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Shin;Lee, Hae-Jin;Shin, Suk-Ho;Yang, Duk-Seok;Shin, Dongseok;Na, Seung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • Water quality monitoring network data is being affected continuously due to non-point source pollution arising from agricultural land located on the Gwangsancheon outlet in the Nakdong River basin. In this study, we have performed analysis of water quality monitoring system, water quality pattern using SOM and water quality in the Gwangsancheon for sub-basin located at Gisan-myeon in the Nakdong River basin. We have developed and applied the model to estimate the runoff and non-point source loading. As a result of SOM pattern, the effect of non-point source pollution was the largest in the paddy fields and fields. As a result of the developed model, we found contribution rate and reduction rate for non-point source loading according to change of landuse because the reduction effect of nonpoint pollutants was 20.9% of SS, 9.9% of TN, 21.2% of TP and 8.9% of TOC depending on the landuse change.

Source Localization in the Anechoic Basin at KRISO/KORDI by Using MUSIC Algorithm (무향수조 내에서 MUSIC 알고리듬을 이용한 음원의 위치 추적)

  • Kim, Sea-Moon;Choi, Young-Cheol;Lee, Chong-Moo;Park, Jong-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.68-72
    • /
    • 2002
  • Localization with array sensors has been applied for not only military but also non-military purposes. The identification of submarines and fish finding are those examples. Nowadays the demand for noise identification is increasing to characterize noise sources and improve acoustic performance of underwater acoustic equipment. For that reason KRISO/KORDI recently constructed an anechoic basin which bus reflection only at the free surface. This paper suggests a noise identification methods using MUSIC algorithm in such an acoustic field. For comparison phase delay sum and minimum valiance methods are also described. At first basic principles are described. A several numerical simulations are also performed. The results say that reflection effect many cause a new non-real source although good estimation is obtained under no reflection conditions.

  • PDF

Basin Ecosystem Management Plan for Water Quality in the Agricultural Reservoir (농업용 저수지의 수질관리를 위한 유역생태계 관리방안)

  • Lee, Soo-Dong;Hong, Suk-Hwn;Kim, Tae-Kyun
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.2
    • /
    • pp.233-246
    • /
    • 2012
  • We need to analyze the ecological characteristics in the basin of agricultural reservoir that include urbanized area, agricultural area and fringe area, etc. The purpose of this study is not only that presenting the methods of basin ecosystem management but also suggesting ecosystem management plan proposals for the water quality based on analysis of ecological characteristics. As the results of analysis, the urbanized area(the ratio of area(ROA): 14.0%) is most likely to possibility of water pollution, then followed by paddy fields(ROA: 65.5%) where a wide spread up-basin(or up-stream), farmlands(ROA: 11.3%), farm buildings(ROA: 5.7%) and orchard(ROA: 3.9%). According to those, we investigated the impact degree of water pollutants. Thus, we were able to classify 5 types through considering the biotope assessment and the hydrosphere basin assessment, i.e. the level of priority control for source pollution. As a result, the source pollution intensive management area(11.3%) where are adjacent waterfront has caused water pollution, however, most importantly, it is necessary to control in source pollution management area(0.6%) that are away from waterfront. In conclusion, according to the these results, the plan of basin ecosystem management for the water quality should be included the plan of ecosystem conservation and restoration such as improving inhabitants function, controling environmentally sound basin management, promoting biodiversity.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Urban Area of the Youngsan-River Basin (영산강 유역 도시지역의 비점오염원 배출특성에 관한 연구)

  • Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.605-613
    • /
    • 2006
  • Discharge characteristics of non-point source pollutant and load amount of the discharge in the urban area were investigated in the Pungyeongjeong-stream basin and the Yongbong-stream basin in this present study. The land use of the studied basins were divided into paddy field, industrial complex area, combined sewage system, separate sewer system and point sources discharge. The descriptive statistics on the event mean concentrations (EMCs) of non-point pollutants by the the land use showed in the range of 4.43-32.28 mg/L for BOD and 8.27~56.17 mg/L for COD. The highest concentration was shown from the combined sewage system. The EMC of SS at the paddy field in the Pungyeongjeong-stream basin showed the highest range with the values ~ from 35.76 to 358.86 mg/L, which might have been influenced by a levee construction in the adjacent of the area. The relatively high concentration values of 4.43~32.28 mg/L and 1.617.13 mg/L emerged from TN and TP,respectively, at the discharge points of the both stream basins.

Denitrification of Piggery Wastewater by Internal Carbon Source (내부탄소원을 이용한 돈사폐수의 탈질화)

  • Rim, Jay-Myoung;Han, Dong-Joon;Woo, Young-Gug
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.13-24
    • /
    • 1996
  • This research aims to investigate the effects of an internal carbon source in the denitrification of piggery wastewater. In this study, the raw wastewater and the effluent from each of anoxic basin and anaerobic basin were used as the internal carbon sources. The experiments were carried out in batch system and the results are as follows ; i) Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. ii) The piggery wastewater contained about 60 percent of the readily biodegradable organic(RDCOD), which led to a conclusion that the raw wastewater could be used as the internal carbon source for the denitrification. For the efficient denitrification, pre-denitrification process was found profitable. iii) In denitrification, alkalinity production rates were in the range of 3.4 to $3.6mgCaCO_3/mgNO_3-N$. iv) The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent.

  • PDF