• Title/Summary/Keyword: sound velocity

Search Result 400, Processing Time 0.029 seconds

Proposal for the use of interactive multimedia art for rehabilitation exercise in early dementia patients : focusing on the program Isadora® (초기 치매 환자의 재활 운동을 위한 인터랙티브 멀티미디어 아트의 활용 제안 : 프로그램 Isadora®를 중심으로)

  • Kang, Hyun-Sook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.559-565
    • /
    • 2020
  • The study intends to use interactive multimedia art performances for rehabilitation exercises for patients with early dementia. The interactive performance is completed by communication and participation of the performer on the stage and the dementia patient, who is the audience, and through this process, the dementia patient performs efficient rehabilitation exercises with interest and immersion. For the study, the characteristics of early dementia patients and effective exercise methods are examined, and a program map is constructed so that the patient's performance viewing leads to participation and leads to rehabilitation exercises. Movements and sounds generated by the audience's participation are converted into MIDI signals of Sound Level, Pitch, and Velocity to become a performance that controls music and video in real time. Through this, the patient will be immersed in the rehabilitation exercise with interest and will be able to have a sense of accomplishment as a participant in the performance. In addition, this study has the significance of expanding the area through various uses and applications of interactive multimedia art.

Evaluation of Creep Properties of W-substituted 2205 Duplex Stainless Steel (W치환 2205 이상 스테인리스강의 크리프 특성 평가에 관한 연구)

  • Kim, Gi-Yeob;Choi, Byong-Ho;Nam, Ki-Woo;Ahn, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The effect of the substitution of Tungsten(W) for Molybdenum(Mo) on the creep behaviour of 22Cr-5Ni duplex stainless steel(DSS) has been investigated. Creep tests were carried out at $600^{\circ}C\;and\;650^{\circ}C$. Intermetallic ${\sigma}$ phase is precipitated during creep at $650^{\circ}C$, at which creep rupture time was much lower compared with at $600^{\circ}C$. The substitution of W for Mo in the duplex stainless steel was known to retard the formation of ${\sigma}$ phase. Minimum creep rate and creep rupture time, however, were hardly influenced by the substitution of 2wt.% W. An ultrasonic measurement for the creep specimens has been carried out for the evaluation of creep damage. The sound velocity increases propotionally with the increase of creep rupture time at $600^{\circ}C$ of creep temperature. On the contrary, the sound velocity decreases with the increase of rupture time at $650^{\circ}C$, which can be correlated with the microstructural evolution during creep.

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Experimental comparison on the noise characteristics of free and impinging jets (자유분류와 충돌분류의 소음특성에 관한 실험적 비교)

  • 이동훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.83-89
    • /
    • 1996
  • The objective of this study is to find experimentally the characteristics of the noise generated by the impinging jet on the normal plate, and also to compare the noise characteristics of the impinging jet with those of the free jet. The experiment is performed for the measurement of the noise specturm, the noise power, and the directivity for the free and impinging jets. From the experiment. it is found that the power of noises generated by the free jet as well as the impinging jet is proportional to the eighth power of the jet velocity through the circular converging nozzle, and that the noise power of the impinging jet is 15dB as high as one of the free jet when the plate distance is about within one to three times the nozzle diameter at the pressure ratio 1.39. The sound pressure level of the impinging jet depends upon the jet pressure and the plate distance. The plate distance with the maximum overall sound pressure level is increased with the jet pressure. The directivities with 1/3 octave band frequency for both the free jet and the impinging jet are greatly influenced by the convection effect.

  • PDF

Fluid analysis of edge Tones at low Mach number using the finite difference lattice Boltzmann method (차분격자볼츠만법에 의한 저Mach수 영역 edge tone의 유체해석)

  • Kang H. K.;Kim J. H.;Kim Y. T.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.113-118
    • /
    • 2004
  • This paper presents a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method (FDLBM). We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of $\alpha=23^0$. At a stand-off distance $\omega$, the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and th propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. The lattice BGK model for compressible fluids is shown to be one of powerful tool for computing sound generation and propagation for a wide range of flows.

  • PDF

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

Control of Combustion Instabilities in a Gas Turbine Combustors Through Secondary Fuel Injection (가스터빈 연소기내 2차연료분사에 의한 연소 불안정성의 제어)

  • Jeon, C.H.;Santavicca, Domenic A.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.59-69
    • /
    • 1998
  • The results of study on the active control of naturally occurring combustion oscillations with a single dominant frequency in an atmospheric dump combustor are presented. Control was achieved by an oscillatory infection of secondary fuel at the dump plane. A high speed solenoid valve with a maximum frequency of 250Hz was used as the actuator and a sound level meter, located at the combustor exit, measured the pressure fluctuations which served as the feedback signal for the control loop. Instability characteristics were mapped over a range of mean mixing section velocities from 6.7 m/s-9.3 m/s and with three mixing conditions. Different fuel/air mixing conditions were investigated by introducing varying percentages of primary fuel at two locations, one at the entrance to the mixing section and one 6 mixing tube diameters upstream of the dump plane. Control studies were conducted at a mean velocity of 9.3 m/s, with an air temperature of $415^{\circ}C$, and from flame blowout to the stoichiometric condition.

  • PDF

A Study on the Joining of Different Al Alloys by Centrifugal Casting (원심주조를 이용한 2종 알루미늄의 접합에 대한 연구)

  • Jang, Young-Soo;Lee, Moon-Hyoung;Moon, Jun-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.237-242
    • /
    • 2007
  • To improve the quality of the product and the cost efficiency, the joining of A356 alloy to an Al-18wt%Si alloys has been performed by centrifugal casting. The influence of the mold preheating temperature, the pouring temperature and the rotational velocity of the mold on the microstructures of the shell in the centrifugal casting was investigated using the experimental and simulation methods. In the present study, the cellular automaton (CA) technique and the finite volume method (FVM) were adopted to simulate the evolution of the macro structures and to calculate the temperature profiles, respectively. The evolution of the microstructures was also simulated using a modified cellular automaton (MCA) model. The optimal rotational speed of the mold for obtaining the sound shape of the shell was estimated experimentally to be over 1200 rpm. For the uniform microstructure, the outer shell needs to be cast with higher preheated mold temperature and lower pouring temperature, and the melt was poured at lower temperature in the inner shell. In order to obtain the sound shape of the joining, the different materials were poured simultaneously.

Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field (음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF