• Title/Summary/Keyword: sound absorption material

Search Result 152, Processing Time 0.02 seconds

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

Effects of Brush Coating of Ag Nanowire Solution and Annealing using Plasma Process for Flexible Electronic Devices (유연 전자소자용 금속 전극 제조를 위한 Ag Nanowire 용액의 Brush 코팅 및 플라즈마 공정을 이용한 어닐링)

  • Kyoung-Bo Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.189-194
    • /
    • 2023
  • Recently, various studies on flexible electronic devices have been performed. In this study, the potential of Ag nanowires was evaluated as a material to replace the ITO transparent conductive film. Ag nanomaterials were formed on the glass by a novel brush coating method and an argon plasma evaporation method based on atmospheric pressure plasma. First, the Ag solution is coated on the glass with a brush, and the remaining solvent is removed with atmospheric plasma. During this process of solvent evaporation, a sound is generated by the reaction between the atmospheric plasma and the solvent. Therefore, the remaining amount of the solvent can be confirmed. In order to observe optical properties and electrical results such as reflectance, transmittance, and absorbance according to the number of coatings of the film, the results were analyzed by coating up to 5 times. For the purpose of investigating the interaction of light with Ag nanowires, reflectance and transmittance were measured while changing the wavelength of light from 200 nm to 800 nm. In the case of absorbance, the trend of increasing light absorption of the Ag nanowires according to the coating was clearly confirmed. The electrical properties showed a great change from the time of coating more than 4 times, and in particular, the resistance value was lower than kΩ/cm2 when the coating was applied 5 times. Based on these optical and electrical results, we plan to verify the possibility of a transparent conductive film by applying it to electronic devices in the future.