• Title/Summary/Keyword: sound absorption

Search Result 441, Processing Time 0.024 seconds

Measurement of Absorption Coefficient, Radiated and Absorbed Intensity on the Panels of a Vehicle Cabin using a Dual Layer Array with Integrated Position Measurement

  • Gade, S.;Morkholt, J.;Hald, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.197-200
    • /
    • 2010
  • In some cases it is important to be able to measure not only the total sound intensity on a panel surface in a vehicle cabin, but also the components of that intensity due to sound radiation and due to absorption from the incident field. For example, these intensity components may be needed for calibration of energy flow models of the cabin noise. A robust method based on surface absorption coefficient measurement is presented in his paper.

  • PDF

Characteristics of Absorption Performance of Sound Absorptive Materials according to Test Conditions (흡음재의 시험조건에 따른 흡음성능 특성)

  • Kang, Dae-Joon;Lee, W.S.;Lee, J.W.;Hong, J.K.;Jo, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.683-689
    • /
    • 2006
  • The sound absorption materials have been used to enhance the performance of a noise barrier and improve the room acoustics. In this study, 6 products of sound absorption materials generally used in Korea were chosen, and their absorption performance was tested in various conditions, that is, it was measured while changing thickness, density and air-gap in their back, and measured with or without facing on their face.

A New Estimation Model of Predicting the Sound Absorption Performance for Multiple Perforated Plate Systems (다중 다공판 시스템의 흡음성능 예측을 위한 계산모델 개발)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.877-882
    • /
    • 2002
  • A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

  • PDF

Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method (전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측)

  • 이동훈;허성춘;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

Sound Absorption Capability and Anatomical Features of Highly Sound Absorptive Wood (고흡음성 목재의 흡음성능과 구조적 특징)

  • Kang, Chun-Won;Kang, Wook;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 2010
  • Sound absorption capability and anatomical features of kagikazura (Uncaria rhynchophylla) and larch (lalix kaemferi) wood were estimated. Sound absorption coefficients had been measured by the two microphone transfer function method and anatomical features of kagikazura wood examined by SEM observation. The sound absorption coefficients of Uncaria rhynchophylla was higher than lalix kaemferi. Especially, in the frequency range of 1 to 4KHz, sound absorption coefficients of kagikazura was about 2~3 times higher than those of lalix kaemferi. Abundant and big vessel observed on the cross sectional surface of kagikazura wood and simple perforation plate observed on the longitudinal surface. It was surmised that the abundant big vessel element and simple perforation plate behaved as a sound absorbing pore.

Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites (그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Park, Gyu-Dae;Choi, Sung-Kyu;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.389-394
    • /
    • 2015
  • The sound absorption coefficient and sound transmission loss of graphite intercalation compound (GIC) included epoxy composites were investigated. Epoxy resin was infused into the expanded GIC and the impedance tube method was employed to measure the sound absorption coefficient and sound transmission loss. Scanning electron microscopy photographs showed uniform distribution of the GIC in the epoxy matrix. The surface density of epoxy/GIC (20 wt%) composites decreased about 56% compared to that of pure epoxy. The sound absorption coefficient of composites increased about 3 times at the frequency range of 500~1000 Hz compared to the pure epoxy. The sound transmission loss of composites decreased with increasing the GIC content and it is attributed to the increase of pores in the composites.

Improvement of Sound Absorption Capability of Wood and wood-based Board by Resonant Absorption (공명흡음에 의한 목재와 목질보드의 흡음성능개선)

  • Kang, Chun-Won;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Improvement of sound absorption capability of wood and wood-based board by resonant absorption was attempted. Sound absorption coefficients of wood and wood-based board which contain normal, simple perforation and stair type perforation had been estimated by the tube method using standing wave ratio. Sound absorption coefficients of wood specimens of simply perforated and perforated with stair were higher than that of normal specimens. Especially, in case of stair type perforation, it was about 50 to 60% higher than that of normal specimen in the frequency of 3 to 4KHz. It was considered that the cavity which had been formed by perforation with stair type behaved as a single resonator. Wood-based board showed good sound absorption coefficients in the frequency from 125Hz to 2KHz and that of perforated board showed a little higher in the frequency from 300Hz to 500Hz than that of normal board. The computed data of resonant frequencies at several sizes of cavity showed good accordance with the estimated data of those.

  • PDF

An acoustical characteristics of sound proof panel for high speed train (고속전철용 방음패널의 음향특성 평가)

  • 서재갑;정성수;서상준;조문재;나희승;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.145-149
    • /
    • 2001
  • In this study, an acoustical characteristics of sound proof panel for high speed train was performed. A sound absorption coefficient and transmission loss of sound proof panels for high speed train were tested in reverberation chambers and compared those of ordinary sound proof panel. The effect of noise barrier was simulated by using ray noise program with measured sound absorption coefficient for high speed train case and for ordinary case.

  • PDF

Effect of surface etching and ultrafine fibers on sound absorption characteristics

  • Lee, Yun-Eung;Seon, Choe-Hwa;Su, Baek-Mun;Hwan, Ju-Chang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.406-409
    • /
    • 1998
  • Sound absorbing materials are divided into several types according to the appearances and the characteristics. Basic mechanism of sound absorption in various sound absorbing materials is the conversion of sound energy into hat energy. Here the important elements which govern by the conversion from sound into heat depend on the type of materials. (omitted)

  • PDF

Effects of sound absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound (흡음 석고보드 천장재에 의한 저주파 중량 바닥충격음의 저감 효과)

  • Song, Han-Sol;Ryu, Jong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • This study investigated effects of absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound through sound absorption coefficient and floor impact sound measurement. The sound absorption coefficients were measured with sound absorbent gypsum board, glass wool on gypsum board, and a double panel absorbent gypsum board (absorbent gypsum board + glass wool + absorbent gypsum board). Result showed that the absorbent gypsum board had sound absorption coefficient of 0.1 ~ 0.7 from 200 and 630 Hz octave band. The sound absorption coefficient was increased in all frequency range by adding glass wool. Additional absorbent gypsum board increased sound absorption coefficient up to 250 Hz octave band, but decreased over 250 Hz. Heavyweight floor impact sounds were measured in test building for three materials above, gypsum board, and bare slab. Result showed that glass wool on gypsum board and a double panel absorbent gypsum board reduced by 3 dB ~ 4 dB (single number quantity) heavyweight floor impact sound. Comparing with bare slab condition, floor impact sound reduction was mainly found from 125 Hz to 500 Hz octave band, and the maximum reduction was shown in the 250 Hz octave band.