• 제목/요약/키워드: sorbents

검색결과 180건 처리시간 0.031초

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • 한국환경보건학회지
    • /
    • 제36권2호
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

부반응 저감 조성 K계 건식 CO2 흡수제 특성평가 (Characterization of Potassium Based Dry CO2 Sorbents Developed for the Reduction of Side Reactions)

  • 장영신;김의식;윤양노;백점인
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.337-341
    • /
    • 2019
  • In this study, the effects of two materials, active alumina and CaO based inorganic binder, which cause the side reaction on the K2CO3-based solid CO2 sorbents was investigated. K2CO3-based solid sorbents called KAM series was prepared by spray drying method and then measured its physical properties and CO2 sorption capacity. Among the KAM series sorbents, KAM(0.5) maintained high CO2 sorption capacity of 7.6 wt% after 3 cycle of sorption/regeneration reaction and showed very low attrition loss as low as 3.1 % which was measured by ASTM D5757-95.

게 껍질을 이용한 수중의 중금속 제거 (The removal of heavy metals by crab shell in aqueous solution)

  • 안희경;박병윤;김동석
    • 한국환경과학회지
    • /
    • 제9권5호
    • /
    • pp.409-414
    • /
    • 2000
  • In order to examine the availability and effectiveness of crab shell for the removal of heavy metals in aqueous solution the crab shell was compared with cation exchange resin(CER), zeolite granular activated carbon (GAC) and powdered activated carbon(PAC) on aspects of heavy metal removal capacity rate and efficiency. In the removal of Pb, Cd and Cr, the heavy metal removal capacity of crab shell was higher than those of any other sorbents (CER, zeolite, GAC, PAC) and the order of heavy metal removal capacity was crab shell>CER>zeolite>PAC GAC. However in the removal of Cu, the result of crab shell was slightly lower than that of CER. The initial heavy metal removal rate was affected by the sorts of sorbents and metals. In all heavy metals the heavy metal removal rate of crab shell was higher than those of any other sorbents. Under the heavy metal concentration of 1.0 mmole/$\ell$ the heavy metal removal efficiency of crab shell was maintained as 93~100% which was much higher than those of any other sorbents.

  • PDF

패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(I) -열중량분석기를 이용한 황화반응특성- (A Study on the $H_2S$ Removal with Utilization of Seashell Waste(I) -The Characteristics of Sulfided Reaction Using Thermal Gravimetric Analyzer-)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.45-49
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. According to TGA results, temperature had influenced on H$_2$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at 80$0^{\circ}C$. Desulfurization was related to calcination temperature. Considering temperature ranges of exhausted gas from hot gas gasification equipment were 400~80$0^{\circ}C$. Thus, desulfurization efficiency would be increased desulfurization temperature situation at highly. Experiments by TGA showed that particle size of sorbents had influenced on desulfurization capacity. Maximum desulfurization capacity was observed at 0.631 mm for oyster and clam. Rest of sorbents showed similar capacity within 0.171~0.335 mm particle size range. So, particle size would be considered. When would be used waste shells as IGCC sorbents. According to the results about desulfurization capacity by TGA, oyster had the best desulfurization capacity among limestone and waste shell. We would be identify to substituted oyster for existing sorbents

패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성 (A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor-)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

양이온 함침 활성탄에서의 저농도 이산화탄소 상온 흡착특성 (Ambient Adsorption of Low-level Carbon Dioxide by Metal Treated Activated Carbon)

  • 이경미;조영민
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.316-324
    • /
    • 2009
  • Carbon based sorbents for $CO_2$ adsorption were prepared by impregnation with alkali metals ($Li^+$, $K^+$) and alkaline earth metals ($Ca^{2+}$, $Mg^{2+}$). BET surface area of test sorbents was lower than the intrinsic activated carbon. In particular, impregnation of $Ca^{2+}$ or $Mg^{2+}$ resulted in lower surface area of specific adsorption sites than that of $Li^+$ or $K^+$. While the adsorption capacity for $CO_2$ was high in the sorbents containing $Ca^{2+}$ and $Mg^{2+}$, strong interaction with $CO_2$ would cause to drop the capacity after regeneration. The adsorption was found high relatively in the flow with a high concentration of $CO_2$ and in a low flow rate. The adsorption isotherm for the present modified AC sorbents fits well with the Freundlich model.

$H_2S$제거를 위한 ZnO-$Al_2O_3$ 탈황제의 제조 및 반응특성 연구 (Preparation and Reactivity of ZnO-Al$_2$O$_3$ Desulfurization Sorbents for Removal H$_2$S)

  • 박노국;이종욱;류시옥;이태진;김재창
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.136-141
    • /
    • 2002
  • 석탄가스화 복합발전용 고온건식 탈황제의 반응성을 개선하기 위하여 $Al_2$O$_3$를 지지체로사용한 ZnO/Al$_2$O$_3$ 탈황제를 제조하고 반응특성을 조사하였다. ZnO/Al$_2$O$_3$의 성분함량 및 소성온도에 따른 물리화학적 구조변화를 XRD로 관찰하였고 ZnO의 소결 및 열화로 인한 활성저하를 $Al_2$O$_3$의 함량과 소성온도를 변화시켜 개선할 수 있음을 탈황 및 재생반응실험을 통하여 확인하였다. 마지막으로 첨가제를 함유한 ZnO/Al$_2$O$_3$ 탈황제의 내구성실험에 의한 고온건식 탈황제로의 사용가능성을 실험적으로 확인하였다.

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 Proceedings of KSEH.Minamata Forum
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF