• Title/Summary/Keyword: solvothermal reaction

Search Result 34, Processing Time 0.022 seconds

Consolidation of Incineration Fly Ash by Solvothermal Reaction

  • Masuda, Kaoru;Endoh, Shigehisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.655-658
    • /
    • 2001
  • The generation of fly ash tends to increase yearly so that this is currently considered a big environmental concern, which requires appropriate treatment approaches. In this research the consolidation of incineration fly ash by the hot-press solvothermal reaction was investigated to provide an alternative process for the treatment and utilization of this waste material. Results showed that at reaction conditions of 52 K treatment, 20 ㎫ pressure and 60 minutes treatment time, the resulting consolidate exhibited a compressive ness strengths of 37-40 ㎫, a tensile strength of 6.5-7.0 ㎫ and a Rockwell hardness of 20-23 RH15W. These properties are comparable to the compressive ness strength of Portland cement which ranges from 30-40 ㎫ as well as with the tensile strengths of mortar, ganite, artificial lightweight aggregate and solidified high connote whose values are 2-2.5 ㎫, 5-9 ㎫, 5-10 ㎫ and 3-5 ㎫ respectively- Furthermore, by mixing fly ash with glass at 50% ratio and then subjecting to similar treatment conditions, a consolidate with even higher tensile strength of 12.5-13.3 ㎫ and hardness of 77-80 RH15W may be achieved.

  • PDF

Synthesis and Characterization of Nickel Powders by a Solvothermal Processing (용매열 합성법에 의한 니켈 분말 합성 및 특성)

  • Park, Chan;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.246-249
    • /
    • 2016
  • Nickel powders were prepared under solvothermal condition by precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at in a temperature range of $190-250^{\circ}C$ for 6h. The morphology and size of nickel powders were studied as a function of reaction temperature. The synthesis of nickel crystalline particles is possible under a solvothermal conditions in ethylene glycol solution. Characterization of the synthesized nickel powders were studied by XRD, SEM(FE-SEM) and TG/DSC. X-ray diffraction analysis of the synthesized powders indicated the formation of nickel structure after reaction. The average crystalline sizes of the synthesized nickel powders were in the range of 200-1000 nm; and the distribution of the powders was broad. The shape of the synthesized nickel particles was almost spherical. The morphology of synthesized nickel powders changed with reaction condition. It was possible to synthesize nickel powders directly in ethylene glycol without reducing agent.

Luminescence properties of Eu3+ : RE2O3 [RE = Gd, Y, La] nanocrystallines prepared by solvothermal reaction method

  • Chung, Jong Won;Yang, Hyun Kyoung;Moon, Byung Kee;Choi, Byung Chun;Jeong, Jung Hyun;Kim, Kwang Ho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.6-9
    • /
    • 2012
  • Eu3+-doped RE2O3 (RE = Gd, Y and La) phosphors were prepared by solvothermal reaction method and their crystalline structure, phase transformation and surface morphologies were investigated by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM). The obtained RE2O3:Eu3+ phosphors are nanocrystalline-sized. The luminescence properties of Eu3+ ions in different host materials, namely, Gd2O3, Y2O3 and La2O3 have been investigated. PACS number: 32.50.+d, 78.55.-m, 81.40.Tv.

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent (알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조)

  • Lee, Sang Geun;Park, Seong Soo;Hong, Seong Soo;Park, Jong Myung;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G.;Agarwal, Sarika
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3046-3054
    • /
    • 2013
  • Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process

  • Madrid, Sergio I. Uribe;Pal, Umapada;Jesus, Felix Sanchez-De
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.187-198
    • /
    • 2014
  • Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.

Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method

  • Ma, Jie;Chen, Bingjie;Chen, Bingkun;Zhang, Shuping
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • Superparamagnetic Zinc ferrite submicropheres are firstly synthesized via a one-pot solvothermal approach at $200-215^{\circ}C$ for 4-8 hours. $ZnCl_2$, $FeCl_3$ and NaAc are used as precursors with ethylene glycol solvent. The X-ray diffraction (XRD) data indicate that $ZnFe_2O_4$ nanoparticles with the grain size around $15{\pm}3nm$ can be successfully synthesized via the one-pot method. The scanning/transmission electronic microscope (SEM/TEM) images further show the samples are submicrospheres self-assembled by nanoparticles with size about 375-500 nm changed with reaction conditions. Room-temperature vibration magnetic strength measurements (VMS) demonstrates the as-obtained $ZnFe_2O_4$ submicrospheres show prefect superparamagnetism, whose coercivity force and remanence are practically nil. The reaction temperature and time influence on the crystallinity, diameter, saturated magnetic intensity and morphology of the particles.

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon;Han, Jae-Eok;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.434-438
    • /
    • 2011
  • Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

Reaction Path of Cu2ZnSnS4 Nanoparticles by a Solvothermal Method Using Copper Acetate, Zinc Acetate, Tin Chloride and Sulfur in Diethylenetriamine Solvent

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kown, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • $Cu_2ZnSnS_4$ (CZTS) nanoparticles were synthesized by a solvothermal method using copper (II) acetate, zinc acetate, tin chloride, and sulfur in diethylenetriamine solvent. Binary sulfide particles such as CuS, ZnS, SnS, and $SnS_2$ were obtained at $180^{\circ}C$; single-phase CZTS nanoparticles were obtained at $280^{\circ}C$. CZTS nanoparticles with spherical shape and grain size of 40 to 60 nm were obtained at $280^{\circ}C$. In the middle of 180 and $280^{\circ}C$, CZTS and ZnS phases were found. The time variation of reaction at $280^{\circ}C$ revealed that an amorphous state formed first instead of binary phases and then the amorphous phase was converted to crystalline CZTS state; it is different reaction path way from conventional solid-state reaction path of which binary phases react to form CZTS. CZTS films deposited and annealed from single-phase nanoparticles showed porous microstructure and poor adhesion. This indicates that a combination of CZTS and other flux phase is necessary to have a dense film for device fabrication.