• Title/Summary/Keyword: solvent-production

Search Result 488, Processing Time 0.024 seconds

Optimization of biodiesel production via methyl acetate reaction from cerbera odollam

  • Dhillon, Sandip Singh;Tan, Kok Tat
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.325-337
    • /
    • 2016
  • Cerbera Odollam (sea mango) is a proven promising feedstock for the production of biodiesel due to its high oil content. Fatty acid methyl esters (FAME) were produced as the final reaction product in the transesterification reflux condensation reaction of sea mango oil and methyl acetate (MA). Potassium methoxide was used as catalyst to study its reacting potential as a homogeneous base catalyst. The initial part of this project studied the optimum conditions to extract crude sea mango oil. It was found that the content of sea mango sea mango oil was 55%. This optimum amount was obtained by using 18 g of grinded sea mango seeds in 250 ml hexane. The extraction was carried out for 24 hours using solvent extraction method. Response surface methodology (RSM) was employed to determine the optimum conditions of the reaction. The three manipulated variables in this reaction were the reaction time, oil to solvent molar ratio, and catalyst wt%. The optimum condition for this reaction determined was 5 hours reaction time, 0.28 wt% of catalyst and 1:35 mol/mol of oil: solvent molar ratio. A series of test were conducted on the final FAME product of this study, namely the FTIR test, GC-FID, calorimeter bomb and viscometer test.

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

Lipid Extraction from Spirulina platensis using Microwave for Biodiesel Production

  • Kalsum, Ummu;Kusuma, Heri Septya;Roesyadi, Achmad;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.301-304
    • /
    • 2019
  • Microwave was designed for lipid extraction from green algae (Spirulina platensis). Microalgae-solvent (various solvents) were extracted and heated using microwave at 600 W for around 40 min. The maximum yield obtained within this period was 12.530% of lipid compared to just 1.293% for Soxhlet extraction. Lipid analysis revealed that those with higher essential fatty acid content consist of saturated fatty acid (SAFA) and polyunsaturated fatty acid (PUFA) which could be used for biodiesel production.

Optimization of Extraction Process for Mass Production of Paclitaxel from plant Cell Cultures (Paclitaxel 대량생산을 위한 추출공정 최적화)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.346-351
    • /
    • 2000
  • Several solvents or combinations of solvents were tested for the extraction of wet or dried biomass at different extraction mode from plant cell cultures. Methanol gave the highest paclitaxel recovery with the least amount of solvent usage. before extraction drying of biomass wass helpful to decrease solvent usage in extraction step./ in this case drying method was very important to obtain high yield from dried biomass. In thid mode of operation counter-current extraction process can be able to decrease solvent usage but paclitaxel recovery was almost same with both batch and counter-current mode of operation. The number of extraction times was at least four to obtain high yield(>99%) from cell and one to obtain highyield(>96%) from cell debris in batch mode. Equilibrium (i.e. the ratio of paclitaxel in biomass to paclitaxel in the extraction solvent) was reached within 5 minutes. The minimum methodal concentration (90%) and solvent amount(biomass : solvent=1 Kg : 1L) are enough to obtain high yield(>98%) for extraction from biomass.

  • PDF

Comparative Study of Extraction Solvents on the Anti-inflammatory Effects of Scutellaria baicalensis

  • Yoon, Tae-Sook;Cheon, Myeong-Sook;Kim, Seung-Ju;Lee, A-Yeong;Moon, Byeong-Cheol;Chun, Jin-Mi;Choo, Byung-Kil;Kim, Ho-Kyoung
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.44-52
    • /
    • 2009
  • Objectives: This study was performed to evaluate the influence of different extracting solvents (water, methanol, ethanol, or n-hexane) on the anti-inflammatory efficacy of Scutellaria baicalensis (Lamiaceae), which has been used widely as a traditional herbal medicine for its anti-inflammatory properties. Methods: The ability of each extract to inhibit the production of pro-inflammatory mediators such as NO, TNF-$\alpha$, and $PGE_2$ by lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells was measured. Results: The results showed that extraction solvents (except n-hexane) for S. baicalensis showed significant inhibitory effects on NO, TNF-$\alpha$ and $PGE_2$ production. Especially, methanol was the solvent with the greatest activity against NO and $PGE_2$ production. However, there was no difference between the extracts for inhibitory activity of TNF-$\alpha$. Conclusion: The present study suggests that methanol is a superior extraction solvent than water, ethanol, or n-hexane for maintaining the anti-inflammatory effects of S. baicalensis.

  • PDF

Development of a Water-soluble Dry Lubricant for Nuclear Fuel Rod Protection (핵 연료봉 표면보호를 위한 수용성 건식 윤활제 개발)

  • Chung, Keunwoo;Kim, Young-Wun;Lee, Sangbong;Hong, Jongsung;Han, Sangjae;Oh, Myoungho
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • Currently, in order to resist the scratching of the fuel rod surface while fabricating the fuel assembly of the light-water nuclear reactor, we use a solution of nitrocellulose, an explosive material, as a dry lubricant along with its solvent. However, the demand for developing safe and harmless aqueous alternative materials for environment-conservation and field-worker safety has increased. In this study, we demonstrate the preparation of a novel aqueous resin composite using a formulation of aqueous polymeric resin, alcoholic solvent, and water. Subsequently, we characterize this composite on the basis of hardness, adhesive property, and water solubility using plates similar to the fuel rod material. The insertion test of a fuel rod coated with the YS-3 composite shows load values of $18.8-20.5kg/cm^2$, which is comparable with $18.8-20.5kg/cm^2$ of the nitrocellulose coating agent. In addition, the depth and width of longitudinal scratches caused by the YS-3 composite test are 50% higher than those of the standard. We can develop a harmless and safe aqueous dry lubricant to replace the existing NC products through field testing of 264 pieces of fuel rods, after producing 350 kg of the YS-3 prototype. The scratch test for the rod surface showed that weight of chip of YS-3 prototype was smaller than that of NC before and after solvent treatment, indicating the properties of YS-3 prototype was comparable to the counterpart.

Prepurification of paclitaxel by micelle and precipitation

  • Seong, Ju-Ri;An, Hui-Bun;Kim, Jin-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.501-504
    • /
    • 2003
  • A novel prepurification method was developed aiming at increasing yield and purity, also reducing solvent usage for purification of paclitaxel. This method was a simple and efficient procedure, for the isolation and prepurification of paclitaxel from the biomass of Taxus chinensis, consisting of micelle formation, followed by two steps of precipitation. The use of a micelle and precipitation in the prepurification process allows for rapid separation of paclitaxel from interfering compounds and dramatically reduces solvent usage compared to alternative methodologies. This prepurification process serves to minimize the size and complexity of the HPLC operations for paclitaxel purification. This process is readily scalable to a pilot plant and eventually to a production environment where multikilogram quantities of material are expected to be produced. As much as possible, the process has been optimized to minimize solvent usage, complexity, and operating costs.

  • PDF

Development of Separation Process for Active Ingradient from Waste Biomass (폐 바이오매스로부터 생리활성물질의 분리공정 개발)

  • Sung, Ju-Li;Kim, Seong-Mun;Kim, Jin-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.196-200
    • /
    • 2003
  • A novel prepurification method was developed aiming at increasing yield and purity, also reducing solvent usage for purification of paclitaxel. The use of a micelle and precipitation in the prepurification process allows for rapid separation of paclitaxel from interfering compounds and dramatically reduces solvent usage compared to alternative methodologies. The prepurification process serves to minimize the size and complexity of the HPLC operations for paclitaxel purification. The process is readily scalable to a pilot plant and eventually to a production environment where multikilogram quantities of material are expected to be produced. As much as possible, the process has been optimized to minimize solvent usage, complexity, and operating costs.

  • PDF

Production of NH2-HNT Using Organic Solvent Reducing Dry Mechanical Device with Different Conditions and with Scale Up Settings (유기용매 사용 감소를 위한 건식 기계 장치를 이용한 NH2-HNT 제조의 조건 변화와 스케일업)

  • Moon il Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.357-361
    • /
    • 2024
  • Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. HNT has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group using huge amount of organic solvents. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange in previous research. For better applications, it was conducted with different parameters and with scale up settings. Best condition was found to reduce usage of solvent, time and man power.

Antioxidant and Nitric Oxide Inhibitory Activities of Pigments from Chionoecetes japonicas Rathbun (홍게 (Chionoecetes japonicas Rathbun) 껍질 색소의 항산화 활성 및 Nitric Oxide 생성억제 효과)

  • Park, Byungju;Baek, Seung Oh;Song, Young-Sun;Seo, Youngwan
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.343-352
    • /
    • 2014
  • In the present study, antioxidant activities of two crude pigments (acetone and MeOH) and their solvent fractions (n-hexane, 85% aq.MeOH, n-BuOH, and water fractions) from red crab shell were evaluated by measuring 1,1-diphenyl-2-picryl hydrazyl (DPPH), peroxynitrites, and degree of production of reactive oxygen species (ROS) in HT 1080 cells as well as the extent of oxidative damage of genomic DNA purified from HT 1080 cells. From comparative analysis, 85% aq.MeOH fraction showed the strongest scavenging effect on both peroxynitrite in vitro and intracellular ROS in HT 1080 cells. Protective activities of these samples against hydroxyl radical-mediated genomic DNA damage were also investigated. 85% aq.MeOH and n-BuOH fractions significantly inhibited oxidative damage of purified genomic DNA. On the other hand, we investigated their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. All samples significantly reduced NO production. Among the samples, n-hexane and water solvent fractions most effectively inhibited NO.