• Title/Summary/Keyword: solvent regeneration

Search Result 53, Processing Time 0.021 seconds

Catalyst-aided Regeneration of Amine Solvents for Efficient CO2 Capture Process

  • Bhatti, Umair H.;Sultan, Haider;Cho, Jin Soo;Nam, Sungchan;Park, Sung Youl;Baek, Il Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-12
    • /
    • 2019
  • Thermal amine scrubbing is the most advanced CO2 capture technique but its largescale application is hindered due to the large heat requirement during solvent regeneration step. The addition of a solid metal oxide catalysts can optimize the CO2 desorption rate and thus minimize the energy consumption. Herein, we evaluate the solvent regeneration performance of Monoethanolamine (MEA) and Diethanolamine (DEA) solvents without and with two metal oxide catalysts (TiO2 and V2O5) within a temperature range of 40-86℃. The solvent regeneration performance was evaluated in terms of CO2 desorption rate and overall amount of CO2 desorbed during the experiments. Both catalysts improved the solvent regeneration performance by desorbing greater amounts of CO2 with higher CO2 desorption rates at low temperature. Improvements of 86% and 50% in the CO2 desorption rate were made by the catalysts for MEA and DEA solvents, respectively. The total amount of the desorbed CO2 also improved by 17% and 13% from MEA and DEA solvents, respectively. The metal oxide catalyst-aided regeneration of amine solutions can be a new approach to minimize the heat requirement during solvent regeneration and thus can remove a primary shortfall of this technology.

A Study on the Regeneration Energy Reduction through the Process Improvement of the Carbon Dioxide Capture Process (상전이 현상을 이용한 이산화탄소 포집공정개선 및 재생에너지 절감에 대한 연구)

  • Kim, Yu-Mi;Kim, Dong-Sun;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.221-225
    • /
    • 2012
  • In this study, simulation works for a carbon dioxide capture process using solvent absorption method have been performed for decrease of regeneration energy in applying phase transition of liquid solvent. When carbon dioxide is dissolved in 30 wt% MEA solvent, liquid mixture divided into two phase according to mole loading of dissolved carbon dioxide. Using this phenomenon, we can decrease regeneration energy about 61% than primary absorber column-stripper column process.

Electrospun poly(D,L-lactic acid)/gelatin membrane using green solvent for absorbable periodontal tissue regeneration

  • Dayeon Jeong;Juwoong Jang;Deuk Yong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.104-109
    • /
    • 2023
  • Electrospinning was performed using an eco-friendly solvent composed of acetic acid, ethyl acetate and distilled water to investigate the effect of gelatin concentration on mechanical properties and cytotoxicity of absorbable poly(D,L-lactic acid) (PDLLA)/gelatin blend membrane. The tensile stress, strain at break, and WUC of the PDLLA/gelatin (97/3) scaffold at 26 wt% concentration were determined to be 3.9 ± 0.7 MPa, 37 ± 1.3 %, and 273 ± 33 %, respectively. FT-IR results revealed that PDLLA and gelatin were bound only by van der Waals interactions. The cell viability of PDLLA/gelatin membranes containing 0 %, 1 %, 2 %, 3 %, and 4 % gelatin were more than 100 %, which makes all membranes highly suitable as a barrier membrane for absorbable periodontal tissue regeneration due to their marketed physical properties and biocompatibility.

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

$CO_2$ Capture Process using Aqueous Monoethanolamine (MEA): Reduction of Solvent Regeneration Energy by Flue gas Splitting (모노에탄올아민(MEA)을 이용한 이산화탄소 포집공정: 배가스 분할 유입을 통한 흡수제 재생 에너지 절감 연구)

  • Jung, Jaeheum;Lim, Youngsub;Jeong, Yeong Su;Lee, Ung;Yang, Seeyub;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.764-768
    • /
    • 2011
  • The process of $CO_2$ capture using aqueous Monoethanolamine(MEA) has been considered as one of the leading technologies for intermediate-term strategy to reduce the $CO_2$ emission. This MEA process, however, consumes relatively a large amount of energy in the stripper for absorbent regeneration. For this reason, various process alternatives are recently established to reduce the regeneration energy. This paper suggests a flue gas split configuration as one of MEA process alternatives and then simulates this process using commercial simulator. This flue gas splitting has an effect on reducing the temperature of the lower section of absorber as well as decreasing the absorbent flow rate. Compared to the base model, this optimized flue gas split process provides 6.4% reduction of solvent flow rate and 5.8% reduction of absorbent regeneration energy.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.

An Environmentally Benign Synthesis of 1-Benzyl-4-aza-1-azonia-bicyclo[2.2.2]octane Tribromide and Its Application as an Efficient and Selective Reagent for Oxidation of Sulfides to Sulfoxides in Solution and Solvent-free Conditions

  • Pourmousavi, S.A.;Salehi, P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1332-1334
    • /
    • 2008
  • Stable crystalline 1-Benzyl-4-aza-1-azonia-bicyclo[2.2.2]octane tribromide (BABOT), can be readily synthesized from the reaction of the corresponding bromide with $HNO_3$ and aqueous KBr. Selective Oxidation of a variety of dialkyl and alkyl Aryl sulfides to the corresponding sulfoxides in high yield was achieved by this reagent in solution ($CH_3CN/H_2O$) and solvent free conditions. The reaction proceeds under neutral and mild conditions and can be carried out easily at room temperature with regeneration of BABOT. In this method purification of products is straightforward and no over oxidation to sulfone was noted.

A study on the preparation of high purity nickel carbonate powders in solvent extraction processing solution from waste iron-nickel alloy etchant (철-니켈 합금 에칭구액 용매추출 공정 용액으로부터 고순도 탄산니켈 제조에 관한 연구)

  • Chae, Byung-man;Hwang, Sung-ok;Lee, Seok-Hwan;Kim, Deuk-Hyeon;Lee, Sang-Woo;Kim, Dae-Weon;Choi, Hee-Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • The $FeCl_3$ waste solution used to etch various metals contains valuable metal such as nickel. In this study, we recovered as high purity nickel carbonate crystalline powders from nickel-containing etching waste solution after regeneration of iron chloride. Firstly we eliminated about of the iron impurities under the condition of pH 4 using 5 % NaOH aqueous solution and then removed the remaining impurities such as Ca, Mn and Zn etc. by using solvent extractant D2EHPA (Di-(2-ethylhexyl) phosphoric acid). Thereafter, nickel carbonate powder having a purity of 99.9 % or more was obtained through reaction with sodium carbonate in a nickel chloride solution.

Porous bioactive glass ceramics for bone-tissue regeneration

  • Yun, Hui-Suk;Kim, Seung-Eon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Nanoporous bioactive glass(NBG) ceramic with well interconnected pore structures were fabricated bytriblock copolymer templating and sol-gel techniques. Hierarchically porous BGbeads were also successfully synthesized by controlling the condition of solvent.The beads have hierarchically nano- and macro-pore structure with a sizesbetween several tens nanometers and several hundred micrometers. Both NBG andBG beads show superior bone-forming bioactivity and good in vitrobiodegradability. Biocompatibility both in vitro and in vivo were examed andwas revealed that it largely relies on the pore morphology as well ascomposition. Our synthetic process can be adapted for the purpose of preparingvarious bioceramics, which have excellent potential applications in the fieldof biomaterials such as tissue engineering and drug storage.

  • PDF