• 제목/요약/키워드: solvent diffusion

검색결과 197건 처리시간 0.028초

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 춘계 총회 및 학술발표회
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산 (Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model)

  • 김남정
    • 대한화학회지
    • /
    • 제58권3호
    • /
    • pp.251-257
    • /
    • 2014
  • Poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기 중, 증류수 용액에서 실행하였다. Eyring-Halsey 모델의 이론적인 응력완화식에 응력완화 실험 결과를 적용하여 여러 가지 유동 파라메타를 계산하였다. 비결정성 영역에서의 유동단위의 고찰을 위하여 유동 파라메타와 결정크기로부터 섬유고분자 물질의 자체확산, 홀 부피, 점성, 열역학파라메타 등을 계산하였다. 이들 시료의 유동 파라메타는 유동 단위의 홀부피, 자체확산, 유동 열역학 파라메타와 직접적인 연관을 갖는 것으로 규명되었다.

용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성 (Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents)

  • 김남정
    • 한국응용과학기술학회지
    • /
    • 제36권4호
    • /
    • pp.1050-1059
    • /
    • 2019
  • 비결정성 영역에서의 유동단위의 고찰을 위하여 유동 파라메타와 결정크기로부터 폴리아미드 섬유고분자 물질의 자체확산, 홀 부피, 유동 열역학 파라메타 등을 계산하였다. 폴리아미드 섬유의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기, 증류수, 산, 염기 용액에서 실행하였다. REM 모델의 이론적인 응력완화 식에 응력완화 실험 결과를 적용하여 여러 가지 유동 파라메타를 계산하였다. 이들 시료의 유동 파라메타는 완화 스펙트럼, 자체확산, 점도 및 유동 활성화 에너지와 직접적인 연관을 갖는 것으로 규명되었다.

Non-polar Solvents (Toluene and Styrene) Enhance Methanol Skin Absorption

  • Lim, Cheol-Hong;Yu, Il-Je
    • Toxicological Research
    • /
    • 제17권1호
    • /
    • pp.7-9
    • /
    • 2001
  • The quantitative assessment of the penetration of organic solvents through skin is necessary for the evaluation of health hazards in occupational environments. We investigated the rate of dermal penetration when mixed or single forms of organic solvents were placed into a diffusion cell in vitro or into an experimental animal in vivo. The diffusion rates of methanol. toluene, and styrene were 6.07, 0.129, and 0.046 mg/$cm^2$/h, respectively. When skin was exposed to the mixed solvent of methanol and toluene, the penetration rate of toluene did not change significantly (0.110 mg/$cm^2$/h). However, the rate of methanol penetration increased to 43.90 mg/$\textrm{cm}^2$/h. The penetration rate of methanol also increased significantly to 54.69 mg/$cm^2$/h by mixing it with styrene. The concentration of methanol in the blood was monitored during the epicutaneous exposure in rats. The blood concentration of methanol was increased by mixing methanol with toluene as seen in the in vitro experiments. These results showed that the penetration rate of organic solvents would be enhanced by mixing them with other solvents.

  • PDF

유화-확산법에 의해 제조된 폴리(ε-카프로락톤) 나노/마이크로캡슐의 형태적 특성 (Morphological Properties of Poly(ε-caprolactone) Nano/Microcapsules Prepared by Emulsion-diffusion Method)

  • 김혜인;정천희;박수민
    • 한국염색가공학회지
    • /
    • 제22권3호
    • /
    • pp.229-238
    • /
    • 2010
  • Poly($\varepsilon$-caprolactone) nano/microcapsules(nmcPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate and poly(vinyl alcohol) (PVA) as an organic solvent and an emulsion stabilizer respectively. The influence of the degree of saponofication of the PVA and the weight ratio of core to wall materials was investigated to design nanocapsules in terms of particle size, morphology, and emulsion stability. The encapsulated nmcPCL were characterized by FT-IR spectrometry, particle size analyzer and scanning electron microscope. Mean size of nanocapsules prepared with PVA with a degree of saponofication of 87% was smaller than those of PVA with a degree of saponofication of 98.5% and the mean particle size of the capsules decreased with increasing core/shell ratio.

A Simple and Simultaneous Analysis of Volatile Halogenated Hydrocarbons in Indoor Air Using Personal Sampler

  • Jung, Won-Tae;Sohn, Dong-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제9권E호
    • /
    • pp.373-381
    • /
    • 1993
  • To understand the human exposure levels of volatile halogenated hydrocar-bons in ambient air, a new rapid and convenient analytical method for determination of the compounds in gaseous phase was evaluated and established. The method is based upon passsive diffusion to personal sampler containing adsorbent and solvent extraction followed by purge trap/ on-column cryof-ocusing method. A new method needs no special instrumentation for gas collection because it is based upon the passive diffusion principle. The typical chromatogram obtained in this study proved that rapid and simultaneous determination of target analytes was possible with good resolution. The developed method was successfully applied to determine the volatile halogenated hydrocarbons in indoor air and the values obtained by this new method were compared with those by direct suction method. The concentration of carbon tetrachloride, 1,1,2-trichloroethylene, chloroform showed the values below 400$\mug/m^3$ except the maximum of 1,513$\mug/m^3$ of chloroform. 1,1,1-Trichloroethane showed approximately 1,000 to 5,000$\mug/m^3$ range of diurnal fluctuation in indoor air.

  • PDF

Benzyl Alcohol이 견섬유의 염색성에 미치는 영향(I) - Milling계 산성염료에 의한 염색속도 - (The Effect of Benzyl Alcohol on Dyeing Properties of Silk fiber (I) - The Rate of Dyeing by Milling Acid Dye -)

  • 탁태문;김종호;배도규
    • 한국염색가공학회지
    • /
    • 제4권2호
    • /
    • pp.55-63
    • /
    • 1992
  • The effects of benzyl alcohol on the properties of dyeing kinetic of silk fibroin were studied. The acid dye used was C.I. Acid Red 114. The half dyeing time is shorten by addition of benzyl alcohol. The diffusion activation energy is higher with the increase of the solvent. The rate of dyeing at benzyl alcohol addition to the purified silk fibroin is faster than that of the unpurified one.

  • PDF

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do;Kim, Soon-Chul;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1554-1560
    • /
    • 2008
  • The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.

고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산 (Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis)

  • 엄효상;박일현
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.415-423
    • /
    • 2010
  • 고검화도(98%이상)의 폴리(비닐 알코올)(PVA)를 디메틸설폭사이드(DMSO) 용매에 녹인 뒤 PVA 준희박 용액 대에서 농도 $C{\simeq}0.14\;g/mL$까지 점성도를 측정하였으며, 이 시스템을 매트릭스로 하여 폴리스티렌(PS) 라텍스 입자의 확산운동 지연을 동적 광산란법으로 조사하였다. PVA/DMSO계의 점성도를 고유점성도 $[{\eta}]$로 스케일된 환산농도 $C[{\eta}]$에 대하여 도시하였을 때 C$[{\eta}]$ >2에서는 분자량 의존성이 강하게 나타났으며, 그 원인은 PVA 용액 내에 존재하는 불균일 영역때문인 것으로 추정하였다. 그러나 매트릭스 내에서 탐침입자의 확산운동은 모든 측정농도에서 단일모드로 관찰되었고, 용액상 및 용매상에서의 확산계수의 비인 D/Do를 $C[{\eta}]$로 도시할 때 전체 농도 범위에서 분자량 의존성은 전혀 나타나지 않았으나 신장지수함수의 적용 한계는 C$[{\eta}]$ >2.5인 것으로 관찰되었다.

유기용매염색(III) -Alkane류를 염색매체로 한 PET의 염색에 있어서 열역학적 파라미터에 의한 염착거동 해석- (Organic Solvent Dyeing(III) -The Interpretation of Dyeing Behavior by Thermodynamic Parameters on Dyeing of Polyester Fiber in Alkanes as Dyeing Media-)

  • 김태경;임용진;조광호;조규민
    • 한국염색가공학회지
    • /
    • 제12권1호
    • /
    • pp.52-60
    • /
    • 2000
  • In the prior studies, we reported that the dye uptakes of C. I. Disperse Violet 1 on polyester fiber in hexane and cyclohexane were higher than those in the other solvents, as the number of carbon atoms of alkanes decreased, the dye uptake increased, and the logarithmic plot of the dye uptakes vs. the solubilities of the dye showed that the dye uptakes are inversely proportional to the solubilities. In this study, for Interpretation of dyeing behavior of C. I. Disperse Violet 1 on polyester in alkanes, the thremodynamic parameters of dyeing, such as standard affnity, heat of dyeing(enthalpy change), entropy change, diffusion coefficient, and activation energy of diffusion, were obtained from isotherms and dyeing rates at different temperature. As the number of carbon atoms of alkanes increased, the standard affinity decreased, but the heat of dyeing(enthalpy change) and the entropy change showed larger negative values. These results mean that as the number of carbon atoms of alkanes increases, the dye uptake decreases, but both the fraction of the dye molecules dyed at relatively highly aligned or compact region of polyester fiber and the regularity of dye aggregates in the fiber become increased. As the number of carbon atoms of alkanes increased, the diffusion coefficient decreased, but the activation energy of diffusion increased. In the alkane of larger number of carbon atoms, because the solubility of the dye is higher, the desorption rate of the dye is faster and the diffusion coefficient is smaller than those in the smaller alkanes. But the energy required to separate the dye molecules from the alkane molecules is much higher because the interaction between the alkane molecule and the dye molecule become strong with the number of carbon atoms.

  • PDF