• 제목/요약/키워드: solution resistance

Search Result 1,858, Processing Time 0.031 seconds

The Effect of Heat Treatment on the Corrosion-Resistance for Ti-6Al-4V Alloy (Ti-6Al-4V합금의 열처리가 내식성에 미치는 영향)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.453-459
    • /
    • 2003
  • In this study, the effect of heat treatment to the electrochemical polarization resistance for the Ti-6Al-4V alloy was measured. The solution heat treatments were carried out at $1066^{circ}E, 966^{\circ}$E$, followed by aging heat treated $550^{circ}E, 600^{circ}E, and 650^{circ}E$. The electrochemical polarization resistance behavior was measured by potentio-dynamic polarization in the 1N $HNO_3$ + 15ppm HF solution. The obtained results were as follows. 1. As solution heat temperature increased. the corrosion potential was increased, whereas passive current density and critical current density were decreased. 2. As aging heat temperature increased, the corrosion potential was almost constant, but passive current density was decreased 3. The results of composition test measured by EDS at grain boundary and near $\gamma'$ precipitates indicated that S, Cl. and Si which originated from base metal were segregated at the grain boundaries Al and Ti which were the main alloying element in $\gamma'$ were depleted at the $\gamma'$ precipitated. The depletion of Al and Ti in $\gamma'$ was caused to early breakdown of passive film.

Monitoring of Initial Stages of Atmospheric Zinc Corrosion in Simulated Acid Rain Solution under Wet-dry Cyclic Conditions

  • EL-Mahdy, Gamal A.;Kim, Kwang B.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.251-256
    • /
    • 2004
  • Exposure of zinc samples in simulated acid rain solution (SARS) was investigated under a periodic wet-dry conditions using an AC impedance technique. The periodic wet and dry exposure consisted of the immersion of zinc samples in SARS for one hour followed by exposure to 7 hours drying at 60% RH. Phases of the corrosion products were indentified by X-ray diffraction (XRD). The influence of relative humdiity (RH), temperature, and surface inclination on the atmospheric corrosion of zinc is described. The reciprocal of polarization resistance (1/Rp) decreases rapidly during the initial stages then slowly and eventually attains a steady state as exposure time progresses. The average of reciprocal of polarization resistance per cycle, (ARPR) was calculated and found to decrease as number of exposure cycle increases. An increase of temperature enhances the corrsion rate of zinc. The values of ARPR, of a sample inclined at 30 o are lower than those for a sample oriented horizontally. The experiment result shows a pronounced dependence of reciprocal of polarization resistance on RH. Exposure in the presence of carbonate anions gives rise to more protective corrosion products than in nitrate anion solution. The corrosion mechanism during the initial stages of atmospheric zinc corrosion under wet-dry cyclic conditions is suggested.

Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

  • Zhang, D.Q.;Shi, C.;Li, J.;Gao, L.X.;Lee, K.Y.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet (열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Song, Min-A;Kim, Sung-Hwan;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

Sulfate Attack Resistance and Microstructural Observations of Cement Matrix Exposed to a Low Temperature Condition (저온환경에 노출된 시멘트 경화체의 황산염침식 저항성 및 미세구조적 조사)

  • Lee, Seung-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.611-617
    • /
    • 2009
  • This paper reports an experimental study on the damage mechanism and resistance of Type I portland cement mortar and paste samples exposed to 5% sodium sulfate solution with different solution temperatures; namely, $4^{\circ}C$, $10^{\circ}C$ and $20^{\circ}C$. The resistance of mortar samples was evaluated using expansion, compressive strength and flexural strength measurements. Some microstructural observations such as x-ray diffraction, differential scanning calorimetry and scanning electron microscopy were also introduced to elucidate reactants formed by sulfate attack, especially in a low temperature condition. From the results, it was found that the degree of damage in the mortar samples was significantly associated with the temperature of sulfate solution. Low temperature of the sulfate solution led to the formation of thaumasite in mortar and paste samples, and subsequently a poor resistance to sulfate attack. Thus, it is noted that when concrete structures are exposed to sulfate media in the condition of a cold region or whether, special care should be taken.

Effect of the Coating Structure on the Corrosion Resistance of Al-Mg Coated Steel (Al-Mg 코팅층의 구조가 강판 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Kim, Sung-Hwan;Byeon, In-Seop;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • Double-layered Al-Mg films have been deposited by using an e-beam deposition method on a cold-rolled steel sheet(CR), which the structure of the film was Al/Mg/CR. The micro-structure, alloy phase, and corrosion resistance of the Al-Mg coated CR were investigated before and after heat treatment at $400^{\circ}C$ for 2, 3, and 10 min in a nitrogen atmosphere. Total thickness of Al-Mg films was fixed at $3{\mu}m$ and the thickness ratio of Al and Mg layers(Al:Mg) has been changed from 5:1 to 1:5. The cross-sectional morphology of the films, which had the thickness ratio of 2:1(Al:Mg), 1:1, and 1:2, was changed after heat treatment from columnar to featureless structure. The x-ray diffraction data for as-deposited films showed only pure Al and Mg peaks. Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ phase appeared after the heat treatment. The Al-Mg coating with the thickness ratio of 1:1(Al:Mg) showed the best corrosion resistance of up to 500 hours by salt spray test.

A Study on the Spacing between the Sand Drain Wells (모래기둥의 설치 간격에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 1992
  • An analytical solution method is presented to determine the radius of influence circle of a sand 4rain well(i.e., spacing between the sand drain wells) required in the design under various types of construction loading. The proposed method deals with a sand drain well having a smeared zone at the periphery of the drain well as well as flow resistance in the drain well. The method proposed in the present study is made based on the modification of 01son's solution which deals with a single ramp loading without considering smeard zone effect as well as flow resistance in the drain well. Further, the effects of various design paramenters on the drain spacing are analyzed using the proposed method.

  • PDF

Influence of Annealing Temperature on Microstructure and Pitting Corrosion Behavior of the 27Cr-7Ni Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Hye-Jin;Kong, Kyeong-Ho;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2014
  • Influence of annealing temperature on the microstructure and resistance to pitting corrosion of the hyper duplex stainless steel was investigated in acid and neutral chloride environments. The pitting corrosion resistance is strongly dependent on the microstructure, especially the presence of chromium nitrides ($Cr_2N$), elemental partitioning behavior and volume fraction of ferrite phase and austenite phase. Precipitation of deleterious chromium nitrides reduces the resistance to pitting corrosion due to the formation of Cr-depleted zone. The difference of PREN (Pitting Resistance Equivalent Number) values between the ferrite and austenite phases was the smallest when solution heat-treated at $1060^{\circ}C$. Based on the results of electrochemical tests and critical crevice temperature tests, the optimal annealing temperature is determined as $1060^{\circ}C$.

A Study on the Boronizing treatment of the microalloyed steel (비조질강의 Boronizing 처리에 관한 연구)

  • 김강형;선명숙;윤재홍;변응선;권동일
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.268-277
    • /
    • 1996
  • Boronizing treatment of Microalloyed steel has been investigated by mean of Boronizing paste mainly consisted of $B_4C$ at various temperatures and times. The micro hardness of the boride layers were about HV 1200~1500. The thickness of the boride layer were increased with an increase of square root of treatment time at constant temperature. The activation energy for diffusion of boron in the specimen obtained from the slope of Arrhenius plots was 254 kJ/mol, but 197 kJ/mol for the induction heated specimen. The boride layer had a good corrosion resistance in solutions of 20% HCl and 20% $H_2SO_4$, solution. In 20% $HNO_3$ solution, however, its corrosion resistance increased. The boride layer had a good high temperature oxidation resistance at below $800^{\circ}C$, but at temperature above $900^{\circ}C$, the oxidation resistance decreased as the oxidation temperature.

  • PDF

Enhanced Corrosion Resistance of WC-Co with an Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.193-193
    • /
    • 2011
  • Strong adhesion of a silicon carbide (SiC) coating to a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In a 1 M NaOH solution, the corrosion current density of SiC-coated WC-Co after heat treatment at 500$^{\circ}C$ was about 50 times lower than that for the as-received WC-Co. In addition, the corrosion resistance systematically increases with increasing the SiC coating thickness. On the other hand, for a 0.5 M H2SO4 solution, the corrosion current density for SiC-coated WC-Co was about 3 times lower than that for the as-received WC-Co. We discuss the physical reasons for the changes in the corrosion current density with the different electrolytes.

  • PDF