• Title/Summary/Keyword: solution phase reduction

Search Result 191, Processing Time 0.028 seconds

Problem Analysis and Improvement of an Experiment on Reactivityof Metals in ChemistryⅠ (화학Ⅰ 금속의 반응성 실험의 문제점 분석 및 개선방안)

  • Seong, Suk-kyoung;Choi, Chui-Im;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.368-376
    • /
    • 2009
  • In this study we investigated and tried to understand problems monitored in an experiment on reactivity of metals in chemistry I. Three problems were discussed. First, the reason that aluminium plate does not react with other metal ions such as zinc, iron and copper was studied and the way to overcome this problem was suggested. Second, the reason that the bubbles were generated when FeS$O_4$(aq) and Zn(s) react was discussed. Third, the precipitates which appeared in the reaction of FeS$O_4$(aq) and Zn(s) were identified. Through reference study and experimental investigation, we could reach the following results. First, aluminium could not react with other metal ions due to the surface oxide layer that is formed very fast and prevents aluminium from reacting with metal ions in solution. This problem could be overcome by allowing a competing reaction of acid and aluminium during the reaction of aluminium and metal ions. Second, the observed bubbles were identified to be hydrogen gas, produced by the reaction between metals and hydronium ion in the solution. Third, black precipitates that were produced on the surface of zinc plate and exhibited magnetic property were characterized to be $Fe_3O_4$(s), and brown precipitates that were produced in the solution phase were to be $Fe_2O_3$(s) by the analysis of X-ray photoelectron spectra.

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF

Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment

  • Haan, Teow Yeit;Chean, Loh Wei;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • Membrane fouling is the main drawback of membrane technology. Frequent membrane cleaning and membrane replacement are, therefore, required to reduce membrane fouling that causes permeate flux reduction, lower rejection, or higher operating pressure. Studies have proved that the alteration of membrane properties is the key controlling factor in lessening membrane fouling. Among stimuli-responsive membranes, thermo-responsive membrane is the most popular, with a drastic phase transition and swelling-shrinking behavior caused by the temperature change. In this study, the thermo-responsive ability of two commercial membranes, PolyCera® Titan membrane and PolyCera® Hydro membrane, at different temperatures was studied on the antifouling function of the membrane in palm oil mill effluent (POME) treatment. The evaluation of the membrane's thermo-responsive ability was done through three cycles of adsorption (fouling) and desorption (defouling) processes in a membrane filtration process. The experimental result depicted that PolyCera® Hydro membrane had a higher membrane permeability of 67.869 L/㎡.h.bar than PolyCera® Titan membrane at 46.011 L/㎡.h.bar. However, the high membrane permeability of PolyCera® Hydro membrane was compensated with low removal efficiency. PolyCera® Titan membrane with a smaller mean pore size had better rejection performance than PolyCera® Hydro membrane for all tested parameters. On the other hand, PolyCera® Titan membrane had a better hydrodynamic cleaning efficiency than PolyCera® Hydro membrane regardless of the hydrodynamic cleaning temperature. The best hydrodynamic cleaning performed by PolyCera® Titan membrane was at 35℃ with the flux recovery ratio (FRR) of 99.17 ± 1.43%. The excellent thermo-responsive properties of the PolyCera® Titan membrane could eventually reduce the frequency of membrane replacement and lessen the use of chemicals for membrane cleaning. This outstanding exploration helps to provide a solution to the chemical industry and membrane technology bottleneck, which is the membrane fouling, thus reducing the operating cost incurred by the membrane fouling.

Prooxidant-antioxidant balance and malondialdehyde over time in adult rats after tubal sterilization and vasectomy

  • Faramarzi, Azita;Seifi, Behjat;Sadeghipour, Hamid Reza;Shabanzadeh, Alireza;Ebrahimpoor, Mitra
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.81-86
    • /
    • 2012
  • Objective: Sterilization (tubal sterilization and vasectomy) is a widely applied contraceptive method worldwide. Although most studies have described sterilization as a safe method, there are reports of tubal ligation (TL) and vasectomy complications. The aim of this study was to evaluate the effects of TL and vasectomy on the serum oxidative stress, specifically prooxidant-antioxidant balance (PAB) and malondialdehyde (MDA) levels, over time. Methods: Male and female rats were classified into vasectomy, sham-vasectomy, TL, and sham-TL groups, respectively. The PAB and MDA levels were measured on days 15 and 45 and months 3 and 6 after the intervention. For female rats, blood sampling was performed during the diestrous phase and estradiol and progesterone were also measured. Results: Serum PAB and MDA increased after TL (p<0.05). Vasectomy increased serum MDA remarkably after 45 days, 3 months, and 6 months (p<0.05). After vasectomy, serum PAB also increased although not significantly. Serum estradiol and progesterone decreased remarkably in the TL group compared to the sham group (p<0.05). Conclusion: Bilateral TL and vasectomy both increase the serum oxidative stress; however the imbalance after TL was very noticeable. As for the TL, the reduction of serum estrogen levels can be involved in this imbalance. Complications followed by TL or vasectomy could be due to increased levels of oxidants. Thus, prescribing antioxidants during and or after surgery may be a solution.

Two-Dimensional Behavior and J-Aggregate Formation of Merocyanine Dye Monolayers in Mutual Mixing (상호혼합에 의한 메로시아닌 색소 단분자막의 2차원 거동 및 J-회합체 형성)

  • Sin, Hun-Gyu;Kwon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.105-110
    • /
    • 2002
  • J-aggregates in the mutual mixing LB films of [6Me-DS]$_{1-x}$ [DO]$_{x}$,[DS]$_{1-x}$ [DO]$_{x}$ and [DSe]$_{1-x}$ [DO]$_{x}$ have been studied by optical absorption, fluorescence and surface pressure-area isotherms. In [6Me-DS]$_{1-x}$ [DO]$_{x}$ films, sharp J-band absorption and fluorescence of [6Me-DS] are linearly shifted to the longer wavelength for the replacement of [6Me-DS] by [DO]. According to the x, a smooth shift of the limited area has been cleared. In the [DS]-[DO] system, the J-band is enhanced at 1:1 composition and strong fluorescence is also observed. Also, the presence of phase separation was suggested in the [DSe]-[DO] system, because the absorption spectra were decomposed into [DSe] and [DO] spectra. On the other hand, in the pressure-area isothermal study, reduction in the molecular occupying area of monolayers has been clarified. This could be ascribed to the enhancement of molecular ordering in J-aggregates. These facts are also believed to reflect the most closely packed arrangement of chromophores in the merocyanine dye monolayers. Thus, it was confirmed that the interaction between mixed dye molecules and the CdC1$_2$+KHCO$_3$subphases affected the J-aggregates of the LB films. Also. it is thought that the J-aggregates are formed non-dimensionally in LB films, such as solution synthesized [DX:DO] assemblies on mixing.s on mixing.

Characteristics and Preparation of Gas Sensors Using Nano SnO2:CNT (나노 SnO2:CNT를 이용한 가스센서의 제작 및 특성연구)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.468-471
    • /
    • 2016
  • $SnO_2:CNT$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at $300^{\circ}C$ in air. The nano $SnO_2$ powders were prepared by solution reduction method using tin chloride ($SnCl_2.2H_2O$), hydrazine ($N_2H_4$) and NaOH. Nano $SnO_2:CNT$ sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the $SnO_2$ surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the $SnO_2:CNT$ sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the $SnO_2:CNT$ powders. The particle size of the $SnO_2:CNT$ sensing materials was about 5~10 nm. The sensing characteristics of the $SnO_2:CNT$ thick films for 5 ppm $H_2S$ gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the $SnO_2:CNT$ gas sensors at room temperature was observed when the CNT concentration was 8wt%.

Effects of Ni Addition on the Microstructures and Magnetic Properties of Fe70-xPd30Nix High-Temperature Ferromagnetic Shape Memory Alloys

  • Lin, Chien-Feng;Yang, Jin-Bin
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.86-95
    • /
    • 2012
  • This study investigated the effects of adding a third alloying element, Ni, to create $Fe_{70-x}Pd_{30}Ni_x$ (x = 2, 4, 6, 8 at.% Ni) ferromagnetic shape memory alloys (FSMAs). The Ni replaced a portion of the Fe. The $Fe_{70-x}Pd_{30}Ni_x$ alloys were homogenized through hot and cold forging to gain a ~38% reduction in thickness, next they were solution-treated (ST) with annealing recrystallization at $1100^{\circ}C$ for 8 h and quenched in ice brine, and then aged at $500^{\circ}C$ for 100 h. Investigation of the microstructures and magnetostriction indicated that the greater Ni amount in the $Fe_{70-x}Pd_{30}Ni_x$ alloys reduced saturation magnetostriction at room temperature (RT). It was also observed that it was more difficult to generate annealed recrystallization. However, with greater Ni addition into the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys, the $L1_0+L1_m$ twin phase decomposition into stoichiometric $L1_0+L1_m+{\alpha}_{bct}$ structures was suppressed after the $500^{\circ}C$/100 h aging treatment. The result was that the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys maintained a high magnetostriction and magnetostrictive susceptibility (${\Delta}{\lambda}{_\parallel}{^s}/{\Delta}H$) after the alloys were aged at $500^{\circ}C$ for 100 h. This magnetic property of the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys make it suitable for application in a high temperature (T > $500^{\circ}C$) and high frequency environments.

Biotemplate Synthesis of Micron Braid Structure CeO2-TiO2 Composite and Analysis of its Catalytic Behavior for CO Oxidation

  • Wang, Chencheng;Jing, Lutian;Chen, Mengpin;Meng, Zeda;Chen, Zhigang;Chen, Feng;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • A series of $CeO_2-TiO_2$ composite samples with different Ce/Ti molar ratios were prepared by the paper template. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm a face-centered cubic lattice of $CeO_2$ with Ce/Ti =8:2 or 9:1 and a two phase mixture of anatase titania and face-centered cubic ceria with Ce/Ti = 7 : 3. The field emission scanning electron microscopy (FESEM) results suggest that the products are micron braid structures consisting of fibers with diameters in a range of $1-6{\mu}m$ and lengths of several hundred micrometers. $N_2$ absorption-desorption testing shows that the composite at Ce/Ti molar fraction of 8 : 2 has the largest BET surface area (about $81m^2{\cdot}g^{-1}$). Compared to the pure $CeO_2$ sample, the composites show superior catalytic activity for $H_2$ reduction and CO oxidation. For the micron braid structure $CeO_2-TiO_2$ composite (Ce/Ti = 8 : 2), due to the high surface area and the solid solution with appropriate $Ti^{4+}$ incorporation, the CO conversion at about $280^{\circ}C$ was above 50% and at $400^{\circ}C$ was 100%.

Antinociceptive Effects of Intrathecal Melatonin on Formalin- and Thermal-induced Pain in Rats (포르말린 및 열성 자극 유발 통증에 대한 척수강 Melatonin의 항침해 효과)

  • Chung, Sung Tae;Jin, Won Jong;Bae, Hong Beom;Kim, Seok Jai;Choi, Jeong Il;Kang, Myung Woo;Jeong, Chang Young;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.137-141
    • /
    • 2006
  • Background: It has been known that melatonin is involved in the modulation of nociceptive transmission. However, the effect of melatonin administered spinally has not been examined. Therefore, we examined the effect of melatonin on the formalin-induced or thermal-induced nociception at the spinal level. Methods: Intrathecal catheter was inserted into the subarachnoid space of male Sprague-Dawley rats. Pain was assessed by formalin test (induced by injection of $50{\mu}l$ of a 5% formalin solution to the hindpaw) or Hot-Box test (induced by radiant heat application to the hindpaw). The effect of intrathecal melatonin was examined on flinching behavior in the formalin test or withdrawal response in Hot-Box test. Results: Intrathecal melatonin produced a limited, but dose-dependent reduction of the flinching response during phase 1 and 2 in the formalin test. In addition, melatonin delivered at evening also decreased the flinching response in both phases of the formalin test. Melatonin restrictively increased the withdrawal latency in Hot-Box test. Conclusions: These results suggest that melatonin is active against the formalin- and thermal-induced nocicpetion at the spinal level, but the effect is limited.

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF