• Title/Summary/Keyword: solution coating method

Search Result 544, Processing Time 0.027 seconds

Analysis of Surface Properties of PVC Thin Film according to Addition of Non-solvent to PVC-THF Solution (PVC-THF 용액에 비용매 첨가에 따른 PVC 박막의 표면 특성 분석)

  • Lee, Seung Gyu;Moon, Je Cheol;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2022
  • The effect of the addition of a polyvinylchloride (PVC) non-solvent to a PVC-tetrahydrofuran (THF) solution on the surface properties of the PVC thin film was analyzed. The non-solvents used were composed of alcohol-based and non-alcoholic ones. Surface morphologies of PVC thin films according to the addition of the non-solvent were compared. In addition, the hydrophobic properties relying on the surface characteristics were compared. The micro-bubbles generated in the preparation of PVC-THF solution affected the surface morphology of the thin film. In order to implement the normal surface physical properties of the coating thin film at the relatively high concentration of PVC-THF solution, the selection of appropriate drying method was required. When an alcohol-based non-solvent was added, a PVC thin film having a granular porous surface was obtained and exhibited super hydrophobic properties. The volume ratio of the PVC-THF solution to the non-solvent affects the surface shape of the coating thin film. The larger the amount of non-solvent was added, the more advantageous it was to form a super hydrophobic PVC thin film.

Synthesis of ITO Nano-Particles by a SAS Method and Preparation of Conductive Film by Coating Them (SAS법을 이용한 ITO 나노입자의 합성과 ITO 도포에 의한 도전필름의 제조)

  • Kim, Moon-Sun;Yun, Sang-Ho;Kim, Byung-Woo
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.180-187
    • /
    • 2007
  • The indium tin oxide(ITO) film on PET was prepared by a wet coating method to obtain the transparent film with a high conductance. ITO nano-particles was synthesized by a SAS method at 15 MPa and $50^{\circ}C$, where optimized rate of In/Sn was 65. Average diameter and resistivity of ITO obtained from SAS are $15{\pm}2\;nm$ and $4{\times}10^4\;{\Omega}{\cdot}cm$. Coating solution was prepared at pH 10. The ITO film was obtained by solution including 0.1 0.5, 1, and 2 ITO wt% on PET. Roughness(Ra) of ITO film with 0.1, 0.5, 1. and 2 ITO wt% is 4, 10, 12, and 16 nm. Resistivity with an increasing ITO concentration is $3.7{\times}10^6,\;2.4{\times}10^6,\;8{\times}10^5,\;and\;2{\times}10^5\;{\Omega}{\cdot}cm$. Transmissivity of ITO film decreased as 89, 88, 86, and 82% with an increasing ITO concentration as 0.1, 0.5, 1, and 2 wt%.

  • PDF

A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method

  • Ahn, SeungHo;Yoo, JiHong;Choi, YoonSeok;Kim, JungGu;Han, JeonGun
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.289-295
    • /
    • 2003
  • The corrosion behavior of Cr-N coated steels with different phases (${\alpha}-Cr$, CrN and $Cr_2N$) deposited by cathodic arc deposition on Hl3 steel was investigated in 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization test than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the $Cr_2N$ coating than in the other Cr-N coated steels. EIS measurements showed, for the most of Cr-N coated steels, that the Bode plot presented two time constants. Also, the $Cr_2N$ coating represents the characteristic of Warburg behavior after 72hr of immersion. The coating morphologies were examined in planar view and cross-section by SEM analyses and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, the CrN coating provided a better corrosion protection than the other Cr-N coated steels.

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint (방청도료의 부식특성과 염분농도의 상관관계에 관한 연구)

  • Moon, Kyung-Man;Lee, Myeong-Woo;Lee, Myeong-Hoon;Kim, Hye-Min;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.

Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices (전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어)

  • Lee, Sunwoo;No, Im-Jun;Shin, Paik-Kyun;Kim, Yongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1115-1119
    • /
    • 2013
  • The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

Fabrication of Transparent Heat-element using Single- Walled Carbon Nanotubes

  • Jeong, Hyeok;Vanquy, Nguyen;Lee, Han-Min;Kim, Dong-Hyeon;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.2-31.2
    • /
    • 2009
  • In this research, single walled carbon nano-tube film was manufactured with spray coating method on glass for application as transparent heat element. SWNTs solution to be used for spraying is obtained by dispersion of 0.01 wt% purified SWNTs in dimethylformamide (DMF) solution through ultrasonification and centrifugation. The transmittance and sheet resistance of SWNTs film were determined by the number of spray injection. Manufactured SWNTs film will have sheet resistance range of $200\;\Omega/\square-900\;\Omega/\square$ at transmittance range of 70-90 %. Heat generation characteristic of SWNTs film was measured by applying constant DC voltage of 15V. The result confirmed that SWNTs film with sheet resistance of $200\;\Omega/\square$ reaches surface temperature of $80^{\circ}C$ within several seconds. In addition, PET coating film was coated on top of the SWNTs film by using laminator in order to solve weak adhesive property of the spray coated SWNTs film on the substrate as well as to maintain its electrical and optical properties.

  • PDF

Effect of nano-sized powder addition on the microstructure and superconducting properties of the YBCO thin film. (나노분말 첨가에 따른 YBCO 초전도 박막의 미셀구조 및 초전도 특성변화 연구)

  • Park, Jin-A;Kim, Byung-Joo;Im, Sun-Won;Ahn, Ji-Hyun;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1998-2000
    • /
    • 2005
  • The effects of the addition of nanocrystalline Y2O3 powder on the microstructure and superconducting properties have been investigated in YBCO films prepared by TFA-MOD process. Precursor solution doped with extra $Y_2O_3$ Powder was prepared by adding $Y_2O_3$ powder into a stoichiometic precursor solution with a cation ratio of Y:Ba:Cu=1:2:3. Coating solutions with and without $Y_2O_3$ doping were coated on $LaAlO_3(100)$ single crystal by a dip coating method, cacination and conversion heat treatments were performed at the controlled atmosphere containing water vapor Current carry capacity(Jc) of YBCO film was enhanced about 50% by $Y_2O_3$ doping. It is thought that the enhancement of Jc is due to the better connectivity of YBCO grains and/or the flux pinning by the presence of nanocrystalline $Y_2O_3$ Particles embedded in YBCO grains.

  • PDF