• Title/Summary/Keyword: solutes

Search Result 242, Processing Time 0.027 seconds

A review of nanomaterials based membranes for removal of contaminants from polluted waters

  • Amin, Muhammad T.;Alazba, Abdulrahman A.
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.123-146
    • /
    • 2014
  • Safe water has becoming a competitive resource in many parts of the world due to increasing population, prolonged droughts, climate change etc. The development of economical and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Nanomaterials have unique characteristics e.g., large surface areas, size, shape, and dimensions etc. that make them particularly attractive for removing various contaminants from polluted waters. Nanotechnology based multifunctional and highly efficient membrane processes are providing affordable solutions in the new era that do not rely on large infrastructures or centralizes systems. The objective of the current study is to review the possible applications of the membrane based nanomaterials/composites for the removal of various contaminations from polluted waters. The article will briefly overview the availability and practice of different nanomaterials based membranes for removal of bacteria and viruses, organic compounds and inorganic solutes etc. present in surface water, ground water, seawater and/or industrial water. Finally, recommendations are made based on the current practices of nanofiltration membranes in water industry for a stand-alone membrane filtration system in removing various types of contaminants from polluted waters.

A Characterization of the Permeation and Separation of Electrolyte Solutions Through Charged Membranes in the Reverse Osmosis Process (이온성 막을 이용한 역삼투압 막 분리 공정에서 전해질 수용액의 투과분리 특성연구)

  • 염충균;최정환;이정민;서동수
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • Various charged homogeneous membranes were fabricated by blending of ionic polymer with a non-ionic polymer with different ratios. In this study. sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic. cationic and non-ionic polymers, respectively. The permcation and separation behaviors of aquCOll::; salt solutions have been investigated through the charged membranes. As the content of ionic polymer increases in the membrane, the hydrophilicity of the membrane increases and pure water flux as well as solution flux increases correspondingly, indicating that the permeation performance through the membrane is cletemunecl mainly by its hydrophilicity-, Electrostatic interaction between the charged membrane and ionic solute molecules, that is. Donnan exclusion was observed to be attributed to salt rejection to a great deal of extent, and molecular sieve mechanism was effective [or the separation of the salt solution under a similar electrostatic circumstance of solutes.

  • PDF

하수처리장 방류수에 용존된 무기화학종의 연속계측자료를 이용한 하천유량, 유속 및 방류량 추적

  • Kim, Gang-Ju;Han, Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • Various Parameters such as stream velocities, discharges, and dispersion coefficients of dissolved solutes were estimated by fitting 1-D nonreactive solute transport model to the time-series chemistry data. This study was done for the reaches of Mankyung River lower than the Jeonju Wastewater Treatment Plant (Jeonju WTP). Korea. Concentrations of inorganic chemicals in the stream waters are strongly influenced by mixing with the chemically distinct effluent from Jeonju WTP. Sulfate, EC. and the total major cation were proved to be nearly conservative in the study area front their relationships with chloride, the conservative chemical species. The solute transport model was constrained to the time-series concentrations for these 4 conservative species. The variations of concentration and discharge of Jeonju WTP were used as input parameters, and the stream velocities, dispersion coefficients, and concentrations and discharges of some inflows were optimized. The differences between the observed arid simulated values for alkalinities and nitrates are inversely correlated and show diurnal fluctuations, indicating the photosynthesis. The parameters obtained front this mode] range from 550 to 774 kcmd (stream discharge at the outlet of the study area), from 0.06 to 0.10 m/sec (flow velocity), and from 0.7 to 6.4 m$^2$/sec (dispersion coefficient). The history of Jeonju WTP discharge was well predicted when optimized, indicating the validity of the model results.

  • PDF

Effect of Ice Recrystallization on Freeze Concentration of Milk Solutes in a Lab-Scale Unit

  • Park, Sung-Hee;Kim, Jee-Yeon;Hong, Geun-Pyo;Kwak, Hae-Soo;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.196-201
    • /
    • 2006
  • Freeze concentration of milk was carried out thorough the controlled recrystallization of ice in a multi-stage freeze concentrator. Artificial temperature control was used to induce ice recrystallization via a heat and cold shock process. In each stage of freeze concentration, the recrystallization time was fixed at 1, 2, 4, and 8 hr to compare the solute concentrate, yield, Brix, ice crystal size, and freezing point at each experimental condition. Higher concentrations of milk solids were seen with increased durations of recrystallization time, and a maximum total solids in the final product of 32.7% was obtained with a ripening time of 8 hr in a second stage process. Milk solid yield decreased according to the solute concentration and recrystallization time. The results of Brix and ice crystal size showed a positive correlation with recrystallizaiton time. These results suggest the possibility of freeze concentration being of practical use in the dairy industry.

Solution Nitriding and Its Effect on the Austenitic Stainless Steels (오스테나이트계 스테인리스강에 대한 질소 고용화 처리 및 그 효과)

  • Huh, J.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.337-345
    • /
    • 2000
  • As a case hardening process for stainless steels, nitriding is more preferred and widely used than carburizing which deterioates corrosion resistance severely. In order to add the nitrogen into the stainless steels, passive film on the surface must be removed effectively before nitriding. Conventional gas nitriding process is performed in the temperature range of 500 to $600^{\circ}C$ with $NH_3$ gas, which often leads to sensitization of stainless steels. In this study, we tried to activate passive film of austenitic stainless steels by heating at low pressure. ($900^{\circ}C$, $5{\times}10^{-2}$ Torr.) Nitriding was performed at the solution treatment temperature of $1100^{\circ}C$ with nitrogen molecules instead of $NH_3$ gas. An attainable nitrogen content in a case depends on the nitrogen gas pressure at constant nitriding temperature. A case depth is proportional to the square root of solution time, which suggests that inward diffusion of nitrogen follows the Fick's 2nd law. Surface nitrogen atoms are dissolved as interstitial solutes, or precipitated in the form of MN, $M_2N$ nitrides, which increase the case hardeness. Dissolved nitrogen in the case enhances the cavitation resistance of austenitic stainless steels dramatically.

  • PDF

Differential responses of two rice varieties to salt stress

  • Ghosh, N.;Adak, M.K.;Ghosh, P.D.;Gupta, S.;Sen Gupta, D.N.;Mandal, C.
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.89-103
    • /
    • 2011
  • Two rice varieties, viz. Nonabokra and Pokkali, have been evaluated for their responses to salinity in terms of some physiological and biochemical attributes. During the exposure to salinity (200 mM concentration of sodium chloride for 24, 48, and 72 h), a significant increase in sodium was recorded which was also concomitant with the changes of other metabolic profiles like proline, phenol, polyamine, etc. The protein oxidation was significantly increased and also varied between the two cultivars. The changes in activities of anti-oxidative enzymes under stress were significantly different to the control. The detrimental effects of salinity were also evident in terms of lipid peroxidation, chlorophyll content, protein profiles, and generation of free radicals; and these were more pronounced in Pokkali than in Nonabokra. The assessment and analysis of these physiological characters under salinity could unravel the mechanism of salt responses revealed in this present study and thus might be useful for selection of tolerant plant types under the above conditions of salinity.

Dehydration and pore swelling effects on the transfer of PEG through NF membranes

  • Escoda, Aurelie;Bouranene, Saliha;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.127-142
    • /
    • 2013
  • In order to investigate the significance of "salting-out" and "pore swelling" effects on the nanofiltration of neutral solutes, rejection properties of two NF ceramic and polymeric membranes were studied with single polyethyleneglycol (PEG) solution and mixed PEG/inorganic electrolyte solutions. For both membranes, the rejection rate of PEG was found to decrease significantly in the presence of ions. In the case of the ceramic membrane (rigid pores), this phenomenon was imputed to the sole partial dehydration of PEG molecules induced by the surrounding ions. This assumption was confirmed by the lowering of the PEG rejection rates which followed the Hofmeister series. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various salts. Concerning the polymeric membrane, the decrease in the rejection rate was found to be systematically higher than for the ceramic membrane. The additional decrease was then ascribed to the swelling of the pores. The experimental data of rejection rates were then used to compute the variation in the mean pore radius in the presence of the various salts. The pore swelling phenomenon due to accumulation of counterions inside pores was supported by electrokinetic charge density measurements.

Changes in Renal Brush-Border Sodium-Dependent Transport Systems in Gentamicin-Treated Rats

  • Suhl, Soong-Yong;Ahn, Do-Whan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.403-411
    • /
    • 1997
  • To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 $mg/kg{\cdot}day$ for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the $Na^+$ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in $Na^+-independent$ transport and the membrane permeability to $Na^+$. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various $Na^+-cotransport$ systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of $Na^+$ and other solutes.

  • PDF

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim;Lee, Seung Hyun;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.261-270
    • /
    • 2015
  • Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

A Study on the Separation of Long-lived Radionuclides and Rare Earth Elements by a Reductive Extraction Process (환원추출에 의한 장수명핵종과 희토류 원소의 분리 연구)

  • 권상운;안병길;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.421-425
    • /
    • 2003
  • The reductive extraction process is an important step to refine the TRU product from the electrorefining process for the preparation of transmutation reactor fuel. In this study, it was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as a surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with a argon gas. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. The reduction reaction was equilibrated within 3 hours after the Li addition. Three eutectic salt systems were compared and Zr was successfully separated from the rare earth elements in all the three salt systems.

  • PDF