• Title/Summary/Keyword: solutes

Search Result 241, Processing Time 0.022 seconds

Limitations of the Linear Solvation Energy Relationships in Reversed Phase Liquid Chromatography

  • Cheong, Won-Jo;Choi, Jang-Duck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.868-873
    • /
    • 1994
  • We have re-examined the linear solvation energy relationships in reversed phase liquid chromatography by considering various solutes including quite a number of compounds of strong hydrogen bond capability. We observed that solutes of strong hydrogen bond ability should be excluded in order to obtain resonable correlations between In k' and solute polarity parameters and that inclusion of one or two such solutes causes severe distortions of correlation results. This anomaly may be due to existence of residual silanol groups in the stationary phase, that is, their specific interactions with solutes.

Evaluation of the Effective Charge Density on Low Pressure Nanofiltration with the Separation Characteristics of Monovalent and Divalent Solutes in the Production of Drinking Water

  • Oh, Jeong-Ik;Taro, Urase
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The electric charge on a membrane was investigated by analyzing the experimental rejection of various monovalent and divalent ionic solutes. The characteristics of the separation of ionic solutes using various nanofiltration membranes were obtained from an experimental nanofiltration set-up, with a surface area of $40cm^2$ under the operational pressures between 0.25-0.3 MPa. The state of the membrane electric charge was observed using separation coefficients, i.e., the permeation ratio of monovalent to divalent ions. To confirm the state of the membrane charge observed via the separation coefficient, a calculation using the extended Nernst-Planck equation, coupled with the Donnan equilibrium, assuming different electric charge states of the membrane, was compared with the experimental rejection of ionic solutes. The examination of the characteristics of separation using three types of nanofiltration membranes showed that one of the membranes carried a negative/positive double charge density inside, while other two membranes carried either a positive or negative charge density.

Solubilization of Oleanolic Acid and Urolic Acid by Cosolvency

  • Jin, In-Jung;Ko, Young-Ill;Kim, Young-Mi;Han, Suk-Kyu
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.269-274
    • /
    • 1997
  • Solubilities of oleanolic acid and ursolic acid in aqueous surfactant solutions, liquid polyethylene glycols (PEG), and solvents of various polarity were measured. The results showed that the solutes were slightly or moderately solubilized in the surfactant solutions and the liquid PEGS. It was also revealed that the solutes were slightly soluble in the solvent of either extreme polarity or nonpolarity, but moderately soluble in solvents of intermediate polarity of which solubility parameters are around 10. The solubility parameters of these solutes were calculated from the group contribution to be 10.2 for both of them. Of the solvents tested, tetramethylurea was exceptionally effective in solubilizing the solutes. The solutes were also moderately soluble in the aqueous cosolvents containing tetramethylurea. This suggests that the mixed systems of tetramethylurea could be employed for the solubilization in the formulation of these compounds as an aqueous system.

  • PDF

Reverse tracking method for concentration distribution of solutes around 2D droplet of solutal Marangoni flow with artificial neural network (인공신경망을 통한 2D 용질성 마랑고니 유동 액적의 용질 농도 분포 역추적 기법)

  • Kim, Junkyu;Ryu, Junil;Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.32-40
    • /
    • 2021
  • Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

The Transport Phenomena of Some Solutes through the Copolymer Membranes of 2-hydroxyethylmethacrylate (HEMA) with Selected Hydrophobic Monomers

  • Kim, Whan-Gun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.128-131
    • /
    • 1985
  • A series of copolymer membranes of 2-hydroxyethylmethacrylate (HEMA) with selected hydrophobic monomers were prepared without crosslinking agents. The equilibrium water content, the partition coefficient, and the permeability of the solutes such as urea, methylurea, 1,3-di-methylurea, and acetamide via these membranes were measured. The partition coefficient data show that as the hydrophobicity of solutes increased, the partition of solutes were dictated by hydrophobic interaction between solute and polymer matrix. Diffusion coefficients obtained in these experiments decrease as the water content of polymer membrane decreases. This decrease is blunt as the excess heat capacities, ${\phi}C^0_p$ (excess) in aqueous solution at infinite dilution of solute increases. To investigate the relationship between water content and diffusion coefficient, the results of the diffusion experiments were examined in light of a free-volume model of diffusive transport. The remarkable increase of urea mobility in the polymer network containing relatively larger bulk water can be considered as water structure breaking effect.

Inverse HPLC approach for the evaluation of repulsive interaction between ionic solutes and a membrane polymer

  • Kiso, Yoshiaki;Kamimoto, Yuki;Hosogi, Katsuya;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.127-139
    • /
    • 2015
  • Rejection of ionic solutes by reverse osmosis (RO) and nanofiltration (NF) membranes is controlled mainly by electrochemical interaction as well as pore size, but it is very difficult to directly evaluate such electrochemical interaction. In this work, we used an inverse HPLC method to investigate the interaction between ionic solutes and poly (m- phenylenediaminetrimesoyl) (PPT), a polymer similar to the skin layer of polyamide RO and NF membranes. Silica gel particles coated with PPT were used as the stationary phase, and aqueous solutions of the ionic solutes were used as the mobile phase. Chromatographs obtained for the ionic solutes showed features typical of exclusion chromatographs: the ionic solutes were eluted faster than water (mobile phase), and the exclusion intensity of the ionic solute decreased with increasing solute concentration, asymptotically approaching a minimum value. The charge density of PPT was estimated to be ca. 0.007 mol/L. On the basis of minimum exclusion intensity, the exclusion distances between a salt and neutralized PPT was examined, and the following average values were obtained: 0.49 nm for 1:1 salts, 0.57 nm for 2:1 salts, 0.60 nm for 1:2 salts, and 0.66 nm for 2:2 salts. However, $NaAsO_2$ and $H_3BO_3$, which are dissolved at neutral pH in their undissociated forms, were not excluded.

Conditions for Ideal Draw Solutes and Current Research Trends in the Draw Solutes for Forward Osmosis Process (정삼투 공정 적용에 적합한 유도 용질의 조건과 최근 동향)

  • Jun, Byung-Moon;Han, Sang-Woo;Kim, Yu-Kyung;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.132-143
    • /
    • 2015
  • Water is an essential resource for humans, but fresh water becomes scarce due to population growth and contamination of limited resources. Membrane technology has been widely used for water treatment, and forward osmosis is a process which does not need high hydraulic pressure for the operation. However, there are needs for (1) development of novel draw solutes causing low internal concentration polarization and reverse salt flux for high water flux, and (2) development of economic recovery method of the draw solutes in the diluted draw solution. Previous researches on the draw solute include $NaHCO_3$ which can be regenerated by about $60^{\circ}C$ heating, sucrose which can make potable water without additional process, and magnetic nanoparticles which can be regenerated by external magnetic field. Using the principles of forward osmosis process, sea water desalination, wastewater treatment, refinement of proteins, energy generation using pressure retarded osmosis process, preparation of diluted fertilizer, and growing algae for biofuel can be conducted. This paper summarizes characteristics of ideal draw solutes, recovery method of the draw solutes, and various application examples.

Diffusion Behavior Characteristics of Some Solutes in Surfactant Aqueous Solutions (계면활성제 수용액에서 몇가지 용질의 확산거동 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • The diffusion behavior of phenol, toluene and benzoic acid in aqueous SDS solution was examined. It showed a similar experimental results for phenol and toluene. The diffusion coefficients of the solutes were characterized by the presence of two distinct regions: below the cmc and above the cmc. For phenol and toluene, it remained approximately unchanged when the SDS concentration was below the cmc. Above the cmc there was an apparent decrease in the diffusion coefficients of the two solutes with increasing SDS concentration. However, for benzoic acid the diffusion behavior was different from that of phenol and toluene. The diffusion coefficient of benzoic acid decreased slightly with increasing SDS concentration, however the diffusion coefficient was almost constant above the cmc. For benzoic acid the diffusion behavior was dependent on the joint contribution of benzoic acid molecules as well as the benzoate ions.

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh;Brahmbhatt, H.;Trivedi, G.S.;Bhattacharya, A.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.137-145
    • /
    • 2011
  • Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.