• Title/Summary/Keyword: solute carbon content

Search Result 10, Processing Time 0.027 seconds

Modeling of Cementite Precipitation Kinetics on Solute Carbon Content in Extra and Ultra Low Carbon Steels (극저탄소강의 고용 탄소 함량에 미치는 시멘타이트 석출 속도 모델링)

  • Choi, Jong Min;Park, Bong June;Kim, Sung Il;Lee, Kyung Sub;Lee, Kyung Jong
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • The solute carbon content in ferrite is one of the important factors to obtain good formability in low carbon steels. Although most of the carbons are consumed by the formation of grain boundary cementite during coiling after hot-rolling, the carbon content after coiling is normally observed much more than that of equilibrium. In this study, a classical nucleation and growth model is used to simulate the precipitation kinetics of the grain boundary cementite from coiling temperature (CT) to room temperature (RT). The predicted precipitation behaviors depending on the initial carbon content and the cooling rate are compared with the reported. As a result, the lateral growth of thickening of cementite is a major factor for the sluggish reaction of grain boundary cementite. The reduction of solute carbon content after coiling is divided into three regions: a) increase due to no cementite precipitation, b) decrease due to the fast length-wise growth of cementite, c) increase due to the slow thickness-wise growth of cementite.

Effect of Aluminum and Solute N on the Strain Aging of Extremely Low-Carbon Automotive Steel Strengthened with Cu sulfide (초극저탄소 Cu강화형 자동차용 강판 변형시효에 미치는 Aluminum 및 고용질소의 영향)

  • Hong, Moon-Hi;Yang, Hye-mi;Song, Seung-Woo;Han, Seong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • The precipitation behavior of solute carbon and nitrogen strongly affects the mechanical properties of low-carbon automotive panel. In the present study, the effects of aluminum and solute nitrogen on the bake hardenability and strain aging of extremely low-carbon steel with carbon content below 15 ppm has been investigated. The ferrite grain size and distribution of precipitates were varied with the amount of aluminum content of 0.003 to ~ 0.100 wt% in a constant solute carbon and nitrogen. With increasing the aluminum content, the ferrite grain size is increased and strain aging is delayed. The strain aging is also delayed by increasing the annealing temperature, although the ferrite grain size is not much changed.

Study of the Distillation of Ferromanganese Alloy Melts at Reduced Pressure (훼로 망간 합금철 용탕의 감압 증류에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;You, Byung-Don;Kim, Jong-Deok;Jang, Pill-Yong;Kang, Soo-Chang;Geum, Chang-Hun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.154-162
    • /
    • 2010
  • A fundamental study of the distillation behavior of ferromanganese alloy melts was carried out at 1773 K and 0.1333 kPa (=1 Torr). During the distillation of ferromanganese alloy melts under reduced pressure, manganese vaporizes preferentially to phosphorus and other solute elements. High purity manganese metal with a very low content of solute elements can be obtained by distillation of ferromanganese alloy melts. The evaporation of manganese is suppressed as the carbon content of ferromanganese alloy melt increases due to the decrease of activity and vapor pressure of the manganese. When the carbon content of ferromanganese alloy melt is high, melt droplets are ejected from the bath, especially in the early stages of the distillation, and the solute elements in the splashed droplets contaminate the condensed material. The ejection of melt droplets is presumed to be caused by the increase of melting temperature and viscosity of the surface layer of melt due to the enrichment of solute elements such as carbon and iron.

Effects of Steel Chemistry, Annealing and Galvannealing Conditions on Bake Hardenability of Hot-Dip Galvannealed Sheet Steels (합금화 용융아연 도금강판의 강성분, 소둔 및 합금화 열처리가 소부경화성에 미치는 영향)

  • 이호종;김종상
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.247-257
    • /
    • 2001
  • In an effort to improve the dent resistance of exterior body panels at a reduced steel thickness, the bake hardenable steels added Ti or Nb with tensile strength of 35Kgf/$\textrm{mm}^2$ were investigated. The bake hardenability increased with the annealing temperature and solute carbon content. Bake hardening of 3 to 5Kgf/$\textrm{mm}^2$ was obtained in steels with a controlled solute carbon concentration range from 6 to 10ppm. The galvannealing temperature and time had little influence on the bake hardenability. The Fe-Zn alloying reaction of 35Kgf/$\textrm{mm}^2$ BH steel was remarkably retarded due to a 0.07%P addition. The optimum galvannealing temperatures of 35Kgf/$\textrm{mm}^2$ BH steel were ranged from 520 to 56$0^{\circ}C$ in view of the Fe content and powdering resistance. The cross-section and planar views of the galvannealed coatings to characterize morphology development were discussed.

  • PDF

Effect of Soaking Temperature on the Bake Hardnability of Ti-Nb Stabilized Steel Sheets (Ti-Nb 복합 첨가강의 BH특성에 미치는 균열온도의 영향)

  • Hur, Bo-Young;Um, Yong-Su;Kim, Sang-Youl;Cho, Sang-Hun;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.4
    • /
    • pp.231-237
    • /
    • 2004
  • Bake hardenable steel utilizes the phenomenon of strain aging to provide an increase in the yield strength of formed components. An increase of the carbon content will improve the bake hardening response: more solutes are available to pin mobile dislocations and to form the clusters more rapidly. But aging resistance decrease as increasing solute carbon. In order to under-stand the compatibility between bake hardenability and aging resistance. The optimum solute carbon control methods during manufacture should be determined. In this paper, the effect of continuous heat cycle conditions such as soaking temperature, rapid cooling start temperature, cooling rate on BH(Bake Hardenability), AI(Aging Index), YP-El(Yield Point Elongation) and other mechanical properties have been investigated. and following results were obtained. In the case of soaking temperature, BH increases with higher soaking temperature because of NbC $dissolution(830^{\circ}C)$, Therefore the solute carbon and BH at $850^{\circ}C$ and $870^{\circ}C$ are higher than these at $810^{\circ}C$. But BH at $870^{\circ}C$ is a little lower than that at $850^{\circ}C$ owing to the ferrite grain size. The measurement of amount of dissolution C using IFT(Internal Friction Test) can explain the relation of solute carbon and BH.

Effects of Ti on Mechanical Property and Damping Capacity in Hot-rolled Fe-17%Mn Alloy (열간압연한 Fe-17wt%Mn 합금의 기계적 성질과 진동감쇠능에 미치는 티타늄 첨가의 영향)

  • Kim, Tai-Hoon;Kim, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Effects of Ti on damping capacity and mechanical properties are investigated in hot rolled Fe-17%Mn alloy. The existing damping alloy with Fe-Mn binary system was limited the use by high production cost, however in case of using scrap iron instead of pure iron although the content of carbon is higher it is possible to be applied wider field especially construction items because the production cost is lower. However, the excellent specific damping capacity is dropped due to the high content of carbon, we developed advanced type of damping alloy included Ti. TiC is formed with added Ti and it holds the specific damping capacity similar to existing damping alloy. The effect of Ti on damping capacity is found to be beneficial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Effects of carbon content and Titanium Addition on Damping Capacity in Fe-17wt%Mn Alloy (Fe-17wt%Mn 합금의 진동감쇠능에 미치는 탄소와 티타늄 첨가의 영향)

  • Baik, S.H.;Kim, J.C.;Jee, K.K.;Shin, M.C.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • Effects of carbon and Ti on damping capacity are investigated in an Fe-17%Mn alloy. The suppressive force of carbon against ${\gamma}{\rightarrow}{\varepsilon}$ transformation increases linearly with an increase in its content, lowering Ms temperature and volume fraction of ${\varepsilon}$ martensite. Carbon deteriorates damping capacity by reducing the interfacial area of damping sources and mobility of the boundaries contributing to anelastic deformation. The reduction in damping capacity is accelerated when carbon-containing alloy is aged at higher temperatures above room temperature. The effect of Ti on damping capacity is found to be benificial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

  • PDF

Single and Binary Competitive Sorption of Phenanthrene and Pyrene in Natural and Synthetic Sorbents

  • Masud, Md Abdullah Al;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.11-21
    • /
    • 2022
  • Sorption of phenanthrene (PHE) and pyrene (PYR) in several sorbents, i.e., natural soil, BionSoil®, Pahokee peat, vermicompost and Devonian Ohio Shale and a surfactant (hexadecyltrimethyl ammonium chloride)-modified montmorillonite (HDTMA-M) were investigated. Pyrene exhibited higher sorption tendency than phenanthrene, as predicted by its higher octanol to water partition coefficient (Kow). Several sorption models: linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. Linear isotherms were observed for natural soil, BionSoil®, Pahokee peat, vermicompost, while nonlinear Freundlich isotherms fitted for Ohio shale and HDTMA-M. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. In the binary competitive sorption of phenanthrene and pyrene in natural soil, competition between the solutes caused reduction in the sorption of each solute compared with that in the single-solute system. The ideal adsorbed solution theory (IAST) coupled with the single-solute Freundlich model was not successful in describing the binary competitive sorption equilibria. This was due to the inherent nature of linear sorption of phenanthrene and pyrene in natural soil. The result indicates that the applicability of IAST for the prediction of binary competitive sorption is limited when the sorption isotherms are inherently linear.

Characteristics of Precipitation Hardened Extra Low Carbon Steels (석출강화형 극저탄소강의 특성에 대한 고찰)

  • Yoon, Jeong-Bong;Kim, Sung-il;Kim, In-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).