• Title/Summary/Keyword: solid-substrate fermentation

Search Result 65, Processing Time 0.022 seconds

Biological Activity and Biochemical Properties of Silkworm (Bombyx mori L.) Powder Fermented with Bacillus subtilis and Aspergillus kawachii (유용식용 균주에 의한 발효 누에분말의 이화학적 특성과 생리활성)

  • Cha, Jae-Young;Kim, Yong-Soon;Ahn, Hee-Young;Kang, Min-Jung;Heo, Su-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • Biological activities (${\alpha},{\alpha}'$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) free radical scavenging activity, fibrinolytic activity and reducing power) and biochemical properties (protein content and electrophoretical protein patterns) were examined in solid state fermentation with Bacillus subtilis and Aspergillus kawachii using silkworm powder (SP) as substrate. The highest protein contents and free radical scavenging activities were seen in the SP fermented for 12 days with B. subtilis and A. kawachii, and these were in a time-dependent manner. The highest reducing power was seen in the SP fermented for 6 days with B. subtilis and for 12 days with A. kawachii, respectively. The highest fibrinolytic activities were seen in silkworm fermented for 6 days with B. subtilis and A. kawachii, but this activity was higher in the A. kawachii fermented SP than that of B. subtilis. When total protein patterns were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), the proteins of the SP fermented with B. subtilis for 3 days were completely degraded, while the protein degradation in the SP fermented with A. kawachii occurred after 12 days and this degradation increased proportionally to culture time. As a result, the SP fermented with both B. subtilis and A. kawachii showed higher fibrinolytic activities after 6 days of fermentation and antioxidative activity after 12 days, indicating that physiological activities of the fermented SP using these strains were highly improved compared to the unfermented SP, and that this compound could be a candidate material as a dietary supplement of healthy functional foods.

Ethanol Production from Tapioca Hydrolysate by Batch and Continuous Cell Retention Cultures (회분 및 연속세포유지 배양에 의한 타피오카당화액으로부터의 에탄올생산)

  • 이용석;이우기
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.598-603
    • /
    • 1995
  • Batch and continuous cell retention cultures were carried out using tapioca hydrolysate. In batch culture, reducing sugar of about 180g/$\ell$ was almost consumed in about 36 hours, and the concentration of ethanol produced was about 84g/$\ell$ making the ethanol yield 0.48 g-ethanol/g-(reducing sugar). The final yeast concentration was 8.5${\times}$107 cells/ml(about 2.1g/$\ell$). In a total cell retention culture operated with a dilution rate of 0.18h-1, the yeast concentration, the residual reducing sugar concentration, the ethanol concentration, and the volumetric ethanol productivity were about 40g/$\ell$, about 15g/$\ell$, 81.4g/$\ell$, and 14.7g/$\ell$-h, respectively. In another cell retention culture operated with a dilution rate and a bleed ratio of 0.2h-1 and 0.14, respectively, the yeast concentration increased to 22g/$\ell$ and the ethanol concentration oscillated around 68g/$\ell$. The volumetric ethanol productivity was about 13.6g/$\ell$-h and the residual reducing sugar concentration about 12g/$\ell$ containing glucose of about 4.5g/$\ell$. According to the results of batch fermentation using the solid residue from hydrolysate filtration as the substrate, it seemed to have a certain value. Thus, development of an effective reactor system to produce ethanol from this solid residue is in need.

  • PDF

Effects of Feeding Heat Treated Protein and Mineral Complex on In Vitro Fermentation Characteristics, Milk Production and Composition of Holstein Dairy Cows (열처리 단백질-광물질 복합제제 첨가가 In Vitro 발효성상과 착유우의 유량 및 유성분에 미치는 영향)

  • Choi, N.J.;Bae, G.S.;Nam, K.P.;Chang, M.B.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.541-548
    • /
    • 2002
  • This study, consisting of two experiments, was conducted to determine the effects of feeding heat treated protein and mineral complex (HPM) on milk production and composition, and ruminal fermentation of Holstein dairy cows. In in vitro experiment, HPM levels were 0, 0.2, 1 and 2%, and Timothy hay, which was substrate, was milled as 1 mm size, and the effects of HPM on pH, ammonia and VFA were analyzed after incubation times of 0, 6, 12, 24 and 48 h, respectively. The pH and ammonia production were not significantly different between treatments during the incubation. In addition, generally, total VFA and individual VFA were not affected by HPM on 0, 6 and 24 h. While, total VFA and individual VFA were increased in 0.2% and 1% of HPM supplemented treatments, but decreased in 2% of HPM treatment compared with control on 12 h. On 48 h, total VFA and individual VFA were increased in HPM treatments compared to control (P<0.05). However, A/P ratio was not affected by HPM supplementation. Gas production was higher in HPM treatment compared to control on 24 h (P<0.05) and 48 h (P<0.05). In lactating experiment, fourteen lactating Holstein cows were used for 4 months in a cross over experimental design. There were two treatments; no added HPM as a control and 0.2% of HPM added as a test treatment. Daily milk yield (P<0.001), 4% FCM (P<0.001), milk protein (P<0.05) and SNF (solid not fat; P<0.05) were increased in HPM treatment compared to control. While, milk fat, MUN (milk urea nitrogen) and SCC (somatic cell count) were not significantly different between treatments.

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Effect of Meju Shapes and Strains on the Quality of Soy Sauce (Aspergillus oryzae 및 Aspergillus sojae를 이용한 개량(改良)메주의 형상에 의한 장류(醬類)의 품질비교)

  • Kim, Sang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.63-72
    • /
    • 1978
  • Effect of shapes (noodle, grain and brick types) and strains (Aspergillus oryzae and Aspergillus sojae) of Meju (microorganism inoculated soybean substrate for fermentation) on the quality of soy sauce was investigated. Generally, the highest protease activity was found in the noodle type-Meju inoculated Asp. sojae during Meju preparation and soy sauce brewing, however, the lowest value was noted in brick type. Meju inoculated Asp. oryzae. Similar tendency was found on the contents of total solid, total nitrogen, amino-nitrogen, nitrogen digestion yield and amino-nitrogen ratio during soy sauce brewing. No effect was shown on the reducing sugar content, alcohol formation, pH, buffer action and salt content according to different Meju types during soy sauce brewing. Organoleptic tests on the color, taste and flavor of soy sauce after 3 months brewing with various Meju scored in the order of noodle type-Asp. sojae soy sauce (best quality), noodle type-Asp, orzae soy sauce, brick type-Asp. sojae soy sauce and brick type-Asp. oryzae-soy sauce (worst quality).

  • PDF