• Title/Summary/Keyword: solid waste incinerator

Search Result 87, Processing Time 0.028 seconds

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF

Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar (알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Slagging treatment of MSW incineration ash by plasma system (플라즈마를 이용한 도시 쓰레기 소각재 용융처리 기술)

  • 박현서;지규일;장준섭;전석구;배희주;김형진;이시창;주성준;신범수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • A plasma melting system to vitrify ny ash from MSW(Municipal Solid Waste) incinerator has been operated in SHI(Samsung Heavy Industries) since 1996. Waste feeding rate was 200kg/hr. with maximum working power of 500㎾. Because of high melting temperature of fly ash, bottom ash was used as an additive to decrease melting temperature. Data analysis for discharged slag shows volume reduction up to 30% and no leaching of heavy metals such as Pb, Cd, Cr which were an obstacle for landfill and recycle. Atmospheric pollution gas like nitrogen oxides, carbon monoxide, and PCDD/PCDF were restrained below the regulatory limit.

  • PDF

Manufacture of 11CaOㆍ$7Al_2O_3$$CaCl_2$Clinker Using the Bottom Ash of Municipal Solid Waste Incinerator Ash (생활폐기물 소각재중 바닥재를 이용한 11CaOㆍ$7Al_2O_3$$CaCl_2$클링커의 제조)

  • Ahn Ji-Whan;Kim Hyung-Seok;Han Gi-Ckun;Cho Jin-Sang;Han Ki-Suk
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.27-36
    • /
    • 2002
  • The clinker of which main component was calcium-chloroaluminate ($l1CaOㆍ7Al_2$$O_3$$CaCl_2$), was synthesized with the bottom ash of municipal solid waste incinerator ash. The hydration mechanism and synthesis temperature of calcium-chloro-aluminate were investigated. The synthesized clinker was blended with a cement. It was substituted with 3~13 wt.% for clinker and $CaSO_4$ of ordinary portland cement. The compressive strength and the content of leached heavy metals of its mortar were measured. Calcium-chloroaluminate was synthesized above $800^{\circ}C$ and its main hydrate was ettringite ($3CaOㆍAl_2$$O_3$$3CaSO_4$$32H_2$O). The calcium-chloroaluminate was also synthesized above $800^{\circ}C$ with the bottom ash of which size fraction was below 30 mesh mainly. The compressive strength of the blended cement mortar was increased as the additive content of the clinker synthesized from the bottom ash was increased by 11 wt.%. The concentration of heavy metals leached from each mortar was satisfied with the value of the environmental standards and regulations.

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Hydrodynamic Characteristics of Circulating Fluidized Bed Incinerator (순환유동층 소각로의 수력학적 특성에 관한 연구)

  • Byun, Y.C.;Park, S.H.;Hwang, J.H.;Kim, S.W.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.173-182
    • /
    • 1999
  • Internally Circulating Fluidized Bed Combustor(ICFBC) has been used for the incineration of waste sewage sludge. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of ICFBC. A lab-scale riser(l/5 scale of pilot plant) is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity, particle diameter and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Our flow regime during experiments mainly belongs to the onset of turbulent regime(for d_{p}:300{\mu}m) and fast fluidization regime(for d_{p}:100{\mu}m). Superficial velocities of each regime are well agreed with results obtained by other researches. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. As the particle size decreases, solid holdup along the riser is more uniformly distributed. To prove these experimental results, numerical calculations are being performed.

  • PDF

Emission Characteristics of Metal Elements from a MSW Incinerator (도시폐기물 소각시설에서의 금속배출특성 연구)

  • Kim, Ki-Heon;Kim, Sam-Cwan;Song, Geum-Ju;Seo, Yong-Chil
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The behavior and characteristics of heavy metals at different streams in a MSWI(Municipal Solid Waste Incinerator) with a capacity of 100tonnes/day were investigated by measuring the concentration of heavy metals and gases and analyzing their leaching data from ashes. Metal components of Cr, Cu, Cd and Pb were in higher concentrations in the fly ashes collected after the water spray tower than in the bottom ashes. It was due to condensation by a lower temperature with water spray cooling. Metal contents in the bottom ash became higher for finer particles as expected. The mass balance of heavy metals in different stream was estimated from the analyzed data in bottom ash and collected dusts at different locations. For the lower volatility of metals such as Pb, Cu, Cr, 88-97% of them remained in the bottom ash, while Cd and Hg escaped from the combustor with remaining in bottom ash of 18.4 and 0.8%, respectively. In most cases the leaching rate of fly ash showed higher values than that of bottom ash, with the their average acidities of 9.8 and 11.9 respectively.

  • PDF

PCDD/PCDFs Emission and Operating Conditions of Domestic MSW Incinerators (국내 도시 쓰레기 소각로에서의 운전조건과 다이옥신 배출량과의 상관관계에 관한 연구)

  • Yang, Won;Shin, Donghoon;Choi, Jinhwan;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1755-1762
    • /
    • 1998
  • In order to minimize emission of polychlorinated dibenzo dioxins and polychlorinated dibenzo furans (PCDD/PCDFs) from municipal solid waste incinerators, it is important to maintain optimized operating conditions along with the system modification/improvement. Operating conditions of MSW incinerator make very complicated influence on formation of PCDD/PCDFs in each unit apparatus. For revealing these influences, concentrations of PCDD/PCDFs are measured from the stack and from the fly ash, while monitoring the plant operating conditions. The effects are grouped into 3 main categories, combustion conditions, de Novo synthesis effects, and adsorption/destruction effects in the flue gas treatment system. Interpretation of the results showed that de Novo synthesis effect, reformation by metalic catalyst, especially Cu in fly ash in the temperature range of $250{\sim}500^{\circ}C$, is found to influence most dominantly on the concentration of PCDD/PCDFs. A plausible mathmatical model for predicting concentration of PCDD/PCDFs is proposed, and discussed.