• 제목/요약/키워드: solid state reaction equations

검색결과 5건 처리시간 0.02초

고상반응식을 이용한 석회-석영의 수열반응속도와 반응메카니즘 (Hydrothermal Kinetics and Mechanisms of Lime and Quartz Used Solid State Reaction Equations)

  • 임굉
    • 공학논문집
    • /
    • 제3권1호
    • /
    • pp.223-233
    • /
    • 1998
  • 고상반응식을 이용한 석회와 석영과의 수열반응속도 및 반응메카니즘에 관하여 연구하였다. 출발물질로 석영과 수산화칼슘 CaO/$SiO_2$몰비 0.8-1.0로 혼합하고 $180-200^{\circ}C$, 0.5-8시간동안 포화증기압하에서 오토클레이브로 수열반응을 행하였다. 수열반응속도는 총 석회의 양과 총 석영의 양에 대한 미반응 석회의 양과 미반응 석영의 양의 비로 구하였다. 반응속도는 Jander의 식 $[1-(1-\alpha)^{1/3}]^N=Kt$를 이용하여 얻은 결과, 석회의 반응속도는 N=1로서 주로 용해속도에 의해 지배되고 석영의 반응속도는 $N\risingdotseq2$로서 확산에 의해 주로 지배된다. 규산칼슘수화물계의 수열반응속도는 반응물 입자주위에 형성된 생성물층을 통한 물질전달에 의해 율속되는 것으로 추정되고 전체 수열반응의 속도식은 대략 $N=1-2$로서 경계층으로부터 확산에 의해 율속과정으로 전환된다.

  • PDF

On Electric Field Induced Processes in Ionic Compounds

  • Schmalzried, H.
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.499-505
    • /
    • 2001
  • The behaviour of ionic compound crystals under combined chemical and externally applied electrical potential gradients is discussed. Firstly, a systematic overview is given. Then a formal analysis follows. The transport equations of the ions and the electric defects predict that even with reversible electrodes demixing, and in particular decomposition of the compound will occur if the applied d.c. current density is sufficiently high. These predictions are illustrated by appropriate experiments. With the help of the solid solution (Me, Fe)O, where Fe-ions are the dilute species, we investigate experimentally the behaviour of a ternary ionic crystal under a d.c. electric current load. All the compounds were placed in a galvanic cell, and the internal reactions which then could be observed were driven by the electric field in this cell. In addition, we discuss the influence of the electric field on the classical solid state reaction AX+BX=ABX$_2$, if again the reaction couple is placed in a galvanic cell.

  • PDF

Nano-particles of Mechanochemical Synthesis

  • Urakaev, Farit Kh.
    • 동굴
    • /
    • 제71호
    • /
    • pp.5-11
    • /
    • 2006
  • A theoretical investigation of the solid phase mechanochemical synthesis of nano sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3 mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano TlCl by dilution of initial (2NaCl+$Tl_2SO_4$) mixture with the exchange reaction product (diluent,$zNa_2SO_4$, z=z*=11.25) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano TlCl obtained experimentally were compared with those for the model reaction KBr+TlCl+zKCl=(z+1) KCl+TlBr (z=z1*=13.5), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

Theory of Nanoparticles Mechanosynthesis

  • Urakaev, Farit Kh.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.405-406
    • /
    • 2005
  • A theoretical investigation of the solid-phase mechanochemical synthesis of nano-sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3-mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact-friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano-TlCl by dilution of initial (2NaCl + $Tl_2SO_4$) mixture with the exchange reaction product (diluent, $zNa_2SO_4$, $z=z^*=11.25$) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano-TlCl obtained experimentally were compared with those for the model reaction KBr + TlCl + zKCl = (z + 1) KCl + TlBr ($z=z_l^*=13.5$), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

  • PDF

Effects of Noise on a Model of Oscillatory Chemical Reaction

  • Basavaraja, C.;Bagchi, Biman;Park, Do-Young;Choi, Young-Min;Park, Hyun-Tae;Choe, Sang-Joon;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1525-1530
    • /
    • 2006
  • A simple oscillating reaction model subject to additive Gaussian white noise is investigated as the model is located in the dynamic region of oscillations. The model is composed of three ordinary differential equations representing the time evolutions of X, Y, and Z, respectively. Initially, a uniform random noise is separately added to the three equations to study the effect of noise on the oscillatory cycle of X, Y, and Z. For a given value of noise intensity, the amplitude of oscillation increases monotonically with time. Furthermore, the noise is added to any one of the three equations to study the impact of noise on one species on the bifurcation behavior of the other.