• Title/Summary/Keyword: solid object identification

Search Result 2, Processing Time 0.017 seconds

Development of Unique Naming Algorithm for 3D Straight Bridge Model Using Object Identification (3차원 직선교 모델 객체의 인식을 통한 고유 명칭부여 알고리즘 개발)

  • Park, Junwon;Park, Sang Il;Kim, Bong-Geun;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.557-564
    • /
    • 2014
  • In this study, we present an algorithm that conducts an unique naming process for the bridge object through the solid object identification focused on 3D straight bridge model. For the recognition of 3D objects, the numerical algorithm utilizes centroid point, and solid object on the local coordination system. It classifies the object feature set by classifying the objects and members based on the bridge direction. By doing so, unique names, which contain the information about span, members and order of the object, were determined and the suitability of this naming algorithm was examined through a truss bridge model and a bridge model with different coordinate systems. Also, the naming process based on the object feature set was carried out for the real 3D bridge model and then was applied to the module on local server and mobile device for real bridge inspection work. From the comparison of the developed naming algorithm based on object identification and the conventional one based on field inspection, it was shown that the conventional field inspection work can be effectively improved.

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.