• Title/Summary/Keyword: solid lubricants

Search Result 114, Processing Time 0.02 seconds

Researches Trend to Produce Jet-fuel from Fischer-Tropsch Wax (Fischer-Tropsch 왁스로부터 항공유제조를 위한 촉매연구동향)

  • Park, Eun-Duck;Park, Myung-June;Kim, Yun-Ha;Kim, Myoung-Yeob;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.793-794
    • /
    • 2010
  • Fischer-Tropsch(F-T) reaction, in which syngas($H_2+CO$) is transformed into liquid fuels, has attracted much attention recently due to the limited reservoir of petroleum. The formed F-T wax can be converted into various liquid fuels, such as gasoline, diesel, jet fuel, lubricants, etc., through the hydrocracking reaction. To carry out the hydrocracking reaction, the bifunctional catalyst is required, in which hydrogenation/dehydrogenation occurs over metal and cracking proceeds over solid acid sites. In this contribution, we review the reported hydrocracking catalysts and summarize some process variables (feed compositions, reaction temperature and reaction pressure) for each catalyst.

  • PDF

Improving the Endurance Life of Deep Groove Ball Bearings for Automotive Transmission (자동차 변속기용 깊은 홈 볼 베어링의 내구수명 향상)

  • Baek, Hye-Yeon;Pyun, Jung-Min;Lee, Dae-Yong;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.281-286
    • /
    • 2015
  • Automotive transmission systems are assembled with a large number of gears and shafts, and rolling bearings are used to ensure their smooth operation. Gear oil in the gear box contains solid particles such as wear debris from contacting gears and metallic chips. This particle-enriched lubricating oil can cause premature failure of the rolling bearings. Research aimed at improving the service life of these rolling bearings has been confined mainly to design and lubrication of the inner/outer rings and the rolling elements. In this paper, we redesigned the shape of the cage pocket of a deep groove ball bearing to reduce the premature failure due to particle contamination. Test bearings are assembled with this new cage design containing a hole punched in the cage pocket. Endurance tests are carried out using the contaminated lubricating oil with miracle grid as hard particle. The duration and damaged bearing component shapes are compared for two different cages. The B10 life of bearing with new cage is increased by about 66% compared to the conventional cage. This is because the hard particles can be easily discharged through the pocket hole without staying for a long time in the lubrication regions. This greatly decreases abrasive wear and dents on the highly stressed ball bearing surfaces. Therefore, the cage design of this study, containing a pocket hole, can significantly delay the premature failure of rolling bearings and improve the endurance life.

Mechanism of Lubricity Improvement by Biodiesels (바이오디젤 윤활성 향상 메커니즘)

  • Lim, Young-Kwan;Lee, Jae-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • As an alternative fuel, biodiesel has excellent lubricating property. Previously, our research group reported that the properties of biodiesels depended on their composed molecular structure. In this study, we investigate lubricity and the mechanism of lubricity improvement of synthesized biodiesel molecules. We synthesize four types of biodiesel components from fatty acid via fisher esterification and soybean biodiesel from soybean oil via transesterification in high yield (92-96%). We analyze the lubricity of the five 5 types of biodiesel using HFRR (high frequency reciprocating rig). We estimate that the mechanism of lubricity is relevant to the molecular structure and structure conversion of biodiesel. The test results indicate that the longer the length of molecules and the higher the content of olefin, the better the lubricity of the biodiesel molecules. However, the wear scar size of the first test samples’ do not show a regular pattern with the wear scar size of the second test samples’. Moreover, we investigated the structure conversion of the biodiesels by using GC-MS for the recovered biodiesel samples from the HFRR test. However, we do not detect structure conversion. Thus, we conclude that the lubricity of biodiesel depends on how effectively solid adsorption and boundary lubrication occurs based on the size of the molecule and the content of olefin in the molecule. In addition, HFRR test condition in not sufficient for Diels-Alder cyclization of biodiesel components.

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.