• 제목/요약/키워드: solid capacitor

검색결과 63건 처리시간 0.032초

전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법 (The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer)

  • 신달우;김성호;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법 (The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer)

  • 신달우;김성호;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

알미늄 고체 전해 커패시터용 도전성 고분자막의 제조 (Preparation of Conduction Polymer for Solid Type Aluminum Electrolytic Capacitor)

  • 양성현;유광균;이기서
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.528-531
    • /
    • 1994
  • Digitalization in electronic system is required the capacitor which have a large capacitance with small size, low impedance at high frequency, and high reliability. The fabrication and its properties of aluminum solid electrolytic capacitor are investigated. Employing conduction polymer film such as, polypyrrole as solid electroylte, solid type aluminum electrolytic capacitors were made. The surface of insulationg oxide is covered with conducting polymer layer prepared by chemical oxidative polymerization. Thereafter this conducting layer is covered with conducting polymer prepared by electrochemical polymerization. The dielectric properties of these capacitors were also measured and discussed. Regarding on frequency characteristics of the trial made capacitor, impedance and ESR at high frequency is lower than those of the stacked type film capacitor. It is alo confirmed that temperature coefficient of capacitance and dissipation factor of the capacitor are lower than those of film capacitor and liquid type aluminum electrolytic capacitor.

PVA-LiBF$_4$ 콤퍼지트 고체 전해질을 사용한 전기 이중층 커패시터의 특성 (Characteristics of Electric Doub1e Layer Capacitor using Polyvinylalcohol-Lithium Salts Solid Electrolyte)

  • 이운용;이광우;신달우;박흥우;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.211-214
    • /
    • 1998
  • The composite of polyvinylalcohol(PVA) and lithium salts(LiBF$_4$) is prepared for a solid-state electrolyte of electric double layer capacitor. The composite shows a good ionic conductivity. The solid-state electric double layer capacitor is made of PVA-LiBF$_4$ composite, activated carbon and etc.. As evaluation of characteristics of capacitor, capacitance change which measured by charge-discharge test with 2.2V~0V at 8$0^{\circ}C$ for 800 hours, was about 10%. The gravimetric and volumetric capacitance were 10.0 F/g~30.0 F/g and 16.0F/㎤~F/㎤, respectively.

  • PDF

열분해 방식에 따른 고체 커패시터의 특성연구 (A Study on the Characteristics of Solid Capacitor According to the Pyrolysis Methods)

  • 김재근;유형진;홍웅희
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.614-622
    • /
    • 2006
  • 질산망간수용액의 열분해에 의한 이산화망간 적용 $Ta/Ta_2O_5/MnO_2$ 커패시터의 특성 연구를 수행하였다. 질산망간수용액의 TG/DSC 분석을 통해 약 $230{\sim}250^{\circ}C$ 범위에서 단일상의 이산화망간이 생성되었다. 열분해 온도, 질산망간수용액의 농도, 열분해 회수를 이산화망간 고체 전해질 생성의 기초 변수로 선정하고 이에 따른 커패시터 특성을 평가하였다. 최적 조성을 기준으로 복사열분해 방식이 대류열분해 방식에 비하여 우수한 특성을 발휘하였다. 이는 복사열분해에 의해 상대적으로 구형의 작은 입자 상태의 이산화망간 입자들이 생성되고 이를 통해 미세 다공성 구조의 커패시터 소결체 내부에 균일하고 치밀한 이산화망간 고체전해질 층이 생성되는 것에서 기인하는 결과임을 확인하였다.

DC 배전용 반도체 변압기를 위한 직렬 연결된 플라잉 커패시터 멀티-레벨 정류기의 모델 예측 제어 방법 (A Model Predictive Control Method of a Cascaded Flying Capacitor Multi-level Rectifier for Solid State Transformer for DC Distribution System)

  • 김시환;장영혁;김준성;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.359-365
    • /
    • 2018
  • This study introduces a model predictive control method for controlling a cascaded flying capacitor multilevel rectifier used as an AC-DC rectifier of a solid-state transformer for DC distribution systems. The proposed method reduces the number of states that need to be considered in model predictive control by separately controlling input current, output DC link voltage, and flying capacitor voltage. Thus, calculation time is shortened to facilitate the level expansion of the cascaded flying capacitor multilevel rectifier. The selection of weighting factors did not present difficulties because the weighting factors in the cost function of the conventional model predictive control are not used. The effectiveness of the proposed method is verified through computer simulation using powersim and experiment.

유기 용매 혼합비에 따른 고체산화물 연료전지 전해질 지지체용 세라믹 그린 시트성형 및 소결 특성 (Ceramic Green Sheet and Sintering Properties on Solvent Mixture Rate of Electrolyte for Solid Oxide Fuel Cells Fabrication)

  • 문봉화;이경민;임경태;이충환;이헌용;윤중락
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.426-430
    • /
    • 2012
  • The properties of green sheet were investigated in order to understanding an effects of organic solvent mixture ratio for solid oxide fuel cells fabrication. The purpose of this work is to optimize the slurry condition using the design of experiment to improve green sheet properties. The elongation increased with increasing amount of binder and solvent. With increasing amount of solvent, the air permeability increased but the tensile strength decreased. The best properties of the green sheet appeared amount of the binder 17 wt%, solvent 35 wt% and powder 48 wt%. The optimum condition of green and sintered density for solid oxide fuel cells fabrication was obtained in the sample pressured at 800 $kgf/cm^2$.

Improved Estimation Method for the Capacitor Voltage in Modular Multilevel Converters Using Distributed Neural Network Observer

  • Mehdi Syed Musadiq;Dong-Myung Lee
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.430-438
    • /
    • 2023
  • The Modular Multilevel Converter (MMC) has emerged as a key component in HVDC systems due to its ability to efficiently transmit large amounts of power over long distances. In such systems, accurate estimation of the MMC capacitor voltage is of utmost importance for ensuring optimal system performance, stability, and reliability. Traditional methods for voltage estimation may face limitations in accuracy and robustness, prompting the need for innovative approaches. In this paper, we propose a novel distributed neural network observer specifically designed for MMC capacitor voltage estimation. Our observer harnesses the power of a multi-layer neural network architecture, which enables the observer to learn and adapt to the complex dynamics of the MMC system. By utilizing a distributed approach, we deploy multiple observers, each with its own set of neural network layers, to collectively estimate the capacitor voltage. This distributed configuration enhances the accuracy and robustness of the voltage estimation process. A crucial aspect of our observer's performance lies in the meticulous initialization of random weights within the neural network. This initialization process ensures that the observer starts with a solid foundation for efficient learning and accurate voltage estimation. The observer iteratively updates its weights based on the observed voltage and current values, continuously improving its estimation accuracy over time. The validity of proposed algorithm is verified by the result of estimated voltage at each observer in capacitor of MMC.

수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발 (Development of EDLC using aqueous polymeric gel electrolytel)

  • 오길훈;김한주;최원경;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

폴리피롤을 고체전해질로 이용한 알루미늄 고체전해 캐패시터 (Aluminum Solid Electrolytic Capacitor Employing Polypyrrole as Solid Electrolyte)

  • 조준상;유남산;이상빈;박영서
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.784-789
    • /
    • 1997
  • 전도성 고분자인 폴리피롤(PPy)을 전해질로 하는 알루미늄(Al)고체전해 캐패시터를 제작하기 위하여 알루미늄 산화피막($Al_2O_3$) 위에 화학산화중합(CP)법으로 얇은 PPy층을 형성시키고, 이 층을 양극으로 이용하여 피롤(Py)을 전해산화중합(EP)시켰다. 캐패시터 특성에 영향을 미치는 중합조건을 조사한 결과, 지지전해질로서 sodium p-toluenesulfonate (TsONa)를 사용하고, 소자당 2.0~4.0 mA의 정전류를 인가, 전해중합 후 제작한 캐패시터의 전기적 특성 및 임피던스 특성이 가장 우수하였다.

  • PDF