• Title/Summary/Keyword: solenoid magnet

Search Result 74, Processing Time 0.018 seconds

Seismic Performance Improvement of Base Isolated Buildings using Smart Passive Control System (스마트 수동 제어 시스템을 이용한 면진 건물의 내진 성능 개선)

  • Jung, Hyung-Jo;Jung, Chan-Kuk;Choi, Kang-Min;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.37-46
    • /
    • 2006
  • In this study, the efficacy of the newly developed smart passive control system to improve seismic performance of base isolated building structures is numerically verified. The smart passive control system consists of a magnetorheological (MR) damper and an electromagnetic induction (EMI) part. The damping characteristics of an MR damper can be controlled by the current generated in an EMI part according to the Faraday's law of electromagnetic induction. An EMI part consisting of a permanent magnet and a solenoid coil could substitute a control system including sensors, a controller and an external power supply in a conventional smart control system. The benchmark control problem for a base isolated building presented by the american society of civil engineers is considered for numerical simulation. The control performance of the smart passive control system is compared to that of the conventional smart control system using MR dampers. It is demonstrated from the numerical simulation results that the smart passive control system is useful to improve the seismic performance of base isolated buildings.

Investigation of Electromagnetic Force for Magnetic Contactor of Railway Vehicles (철도차량용 전자접촉기 전자코일의 전자기력 특성 연구)

  • Jung, Jooyoung;Park, Ji-Won;Choi, Jinnil
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.324-330
    • /
    • 2016
  • A magnetic contactor is a switching device widely used for electric circuits. For the operation of magnetic contactors, magnetic coils are essential; these coils create and interrupt the electric circuit. In this paper, the finite element analysis model was developed to reflect the experimental data, and was verified through alteration of the applied voltages and the numbers of turns. Effects of electromagnetic force on the geometrical variations of the facing poles for fixed and moving cores of two magnet coils were investigated. In addition, effects of slope and air gap size between two facing poles on the electromagnetic force were explored through the distribution of the magnetic flux density in the magnetic coils of a push-type solenoid. Through this analysis, the characteristics of the electromagnetic force against the facing poles were explored.

Magnetic Resonance Imaging of Lumen Wall using Quadrature-typed Inside-out Receiver Coil (회전자계 역수신 코일을 이용한 관벽의 자기공명 영상)

  • 문치웅;조종운
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.385-392
    • /
    • 2001
  • This study Proposes a quadrature-typed inside-out receiver coil to obtain magnetic resonance(MR) images of lumen wall. This means that the coil should receive the signals from out-side of receiver coil. This coil has wide and uniform sensitive region to compare with previous coils such as anti-solenoid coil, octal-pole coil and so on. These coils have the disadvantages that sensitive region is narrow and inhomogenous. The proposed coil is consist of two saddle coils of which directions are orthogonal to one another. The sensitivity maps of octal-Pole coil single-saddle coil and quadrature-typed inside-out coil were obtained by computer simulation. And phantom images for each coil were obtained to evaluate the performances of the coil using both 1.5T superconducting and 0.3 Permanent magnet MRI system. The uniformity of quadrature coil's sensitivity map was superior to that of octal-polel coil. Experimentally measured SNR of quadrature coil is also 36% higher than that of single-saddle coil This study shows the possibility of quadrature-typed inside-out receiver coil for the MR lumen wall images.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.