• Title/Summary/Keyword: solar-blind

Search Result 61, Processing Time 0.018 seconds

Pergola's Shading Effects on the Thermal Comfort Index in the Summer Middays (여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.52-61
    • /
    • 2013
  • This study was conducted to investigate the effects of pergola's shading on the thermal comfort index in the summer. The 3 type of pergolas($4m{\times}4m{\times}h2.7m$) which were screened overhead(I)/overhead west(II)/overhead west north(III) plane with reed blind for summer shading and winter wind break, were constructed on the 4th floor rooftop. Thereafter the meteorological variables(air temperature, humidity, radiation, and wind speed) of pergola I, III and rooftop were measured from 14 to 16 August 2013(1st experiment), those of pergola I, II and rooftop were measured from 26 to 28 August 2013(2nd experiment). The effects of pergola's shading on the radiation environment and mean radiant temperature($T_{mrt}$), standard effective temperature($SET^*$) were as follows. The maximum 1 h mean values of differences ${\Delta}$ of the sums of shortwave radiant flux densities absorbed by the human body (${\Delta}K_{abs,max}$) between pergola I, III and nearby sunny rooftop were $-119W/m^2$, $-158W/m^2$, those between pergola I, II and rooftop were $-145W/m^2$, $-159W/m^2$. The maximum 1 h mean values of differences ${\Delta}$ of the sums of long wave radiant flux densities absorbed by the human body (${\Delta}L_{abs,max}$) between pergola I, III and nearby sunny rooftop, were $-15W/m^2$, $-17W/m^2$, those between pergola I, II and nearby rooftop, were $-8W/m^2$, $-7W/m^2$. The response of the direction dependent long wave radiant flux densities $L_1$ on the pergola's shading turned out to be distinctly weaker as compared to shortwave radiant flux densities $K_1$. The pergola's shading leads to a lowering of $T_{mrt}$ and $SET^*$. The peak values of $T_{mrt}$ absorbed by the human body were decreased $16^{\circ}C$ and $21.4^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $18.8^{\circ}C$ and $20.8^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The peak values of $SET^*$ absorbed by the human body were decreased $2.9^{\circ}C$ and $2.6^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $3.5^{\circ}C$ and $2.6^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The relative $SET^*$ decrease in pergola II, III compared to nearby sunny rooftop $SET^*$ were lower than that in pergola I, revealing the influence of the wind speed. Therefore it is essential to design pergola to maximize wind speed and minimize solar radiation to achieve comfort in the hot summer. The $SET^*$ under pergola I, III were exceeded $28.7^{\circ}C$ and $30.4^{\circ}C$ which were the upper limit of thermal comfort and tolerable zone during all most daytimes in the 1st experiment(maximum air temperature $37.5^{\circ}C$). The $SET^*$ under pergola I was exceeded $28.7^{\circ}C$ which was the upper limit of thermal comfort zone at 13h, that under pergola II was exceeded $28.7^{\circ}C$ from 8h to 14h, meanwhile the $SET^*$ under pergola I, II were within thermal tolerable zone during most daytimes in the 2nd experiment(maximum air temperature $34.4^{\circ}C$). Therefore to ensure the thermal comfort of pergola for summer hottest days, pergola should be shaded with not only reed blind but also climbing and shade plants. $T_{mrt}$ and $SET^*$ were suitable index for the evaluation of pergola's shading effects and outdoors.