• 제목/요약/키워드: solar uv

검색결과 421건 처리시간 0.026초

스퍼터링에 의한 CdTe 박막 제조 조건이 CdTe/CdS 태양전지의 특성에 미치는 영향 (Effect of Sputtering Conditions for CdTe Thin Films on CdTe/CdS Solar Cell Characteristics)

  • 정해원;이천;신재혁;신성호;박광자
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권9호
    • /
    • pp.930-937
    • /
    • 1997
  • Polycrystalline CdTe thin films have been studied for photovoltaic application because of their high absorption coefficient and optimal band energy(1.45 eV) for solar energy conversion. In this study CdTe thin films were deposited on CdS(chemical bath deposition)/ITO(indium tin oxide) substrate by rf-magnetron sputtering under various conditions. Structural optical and electrical properties are investigated with XRD UV-Visible spectrophotometer SEM and solar simulator respectively. The fabricated CdTe/CdS solar cell exhibited open circuit voltage( $V_{oc}$ ) of 610 mV short circuit current density( $J_{sc}$ ) of 17.2 mA/c $m^2$and conversion efficiency of about 5% at optimal sputtering conditions.

  • PDF

고분자 태양전지의 결정구조와 특성의 상관성 (Correlation Between Crystal Structure and Properties in Polymer Solar Cells)

  • 김정용
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.88-93
    • /
    • 2008
  • 지역규칙성 폴리3핵실티오펜과 용해성 플러렌 블렌드로 이루어진 벌크이종접합 고분자 태양전지를 제작하였다. 고분자 블렌드 필름에 대한 열처리 효과가 필름의 결정 구조와 자외선/가시광선 흡수스펙트럼에 주는 영향을 조사하였다. 그 후, 열처리에 의한 필름의 결정구조와 태양전지 효율의 상관관계를 연구하였다. 그 결과, $150^{\circ}C$에서 열처리한 필름이 분자간 상호작용 및 결정성측면에서 최적이었으며, 이 때, 고분자 태양전지의 에너지 전환 효율은 3.2 %이었다.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Synthetic Strategy and Optical Property Characterization of Complex Nanorods: Plasmon Wave Guide and Solar Cell

  • Park, Sung-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.111-111
    • /
    • 2012
  • In this talk, we represent a novel approach to investigating intra-nanorod surface plasmon coupling with control over block compositions. The multi-component rod-like nanostructures, which consist of optically active components (Au and Ag) and optically less active component (for example, Ni) in UV-vis-NIR spectral window, showed interesting optical response depending on each block length and the total length of the structure. By controlling the composition and relative lengths of the blocks that comprise these structures, we can tailor the overall optical properties. Depending on the relative fraction of Au and Ag blocks, the intensity of the transverse modes varied without noticeable peak shifts. However, the strong intraparticle surface plasmon coupling resulted in the collective appearance of longitudinal LSP modes, including higher-order modes. The experimental observations were confirmed by theoretical calculation, using a discrete dipole approximation method. In addition, we will briefly discuss how single nanorod solar cells can be synthesized by using by using electrochemical deposition and AAO hard templates.

  • PDF

Non-vacuum processing of CIGS absorber layer using nanoparticle

  • Ham, Chang-Woo;Song, Ki-Bong;Suh, Jeong-Dae;Cho, Jung-Min
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.267-267
    • /
    • 2009
  • Solar cells with CIGS absorber layers have proven their suitability for high efficiency and stable low cost solar cells. We prepared and characterized particle based CIGS thin film using a non-vacuum processing. CIGS powder were obtained at $240^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$, Se powder in solvent. The nanoparticle precursors were mixed with binder material. The CIGS thin film deposited on a sodalime glass. The CIGS thin film were identified to have a typical chalcopyrite tetragonal structure by using UV/Visible-spectroscopy, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), Scanning Electron Microscopy(SEM).

  • PDF

OBSERVATIONAL TESTS OF CHROMOSPHERIC MAGNETIC RECONNECTION

  • CHAE JONGCHUL;MOON YONG-JAE;PARK SO-YOUNG
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.13-20
    • /
    • 2003
  • Observations have indicated that magnetic reconnect ion may occur frequently in the photosphere and chromosphere as well as in the solar corona. The observed features include cancelling magnetic features seen in photospheric magnetograms, and different kinds of small-scale activities such as UV explosive events and EUV jets. By integrating the observed parameters of these features with the Sweet-Parker reconnect ion theory, an attempt is made to clarify the nature of chromospheric magnetic reconnection. Our results suggest that magnetic reconnect ion may be occurring at many different levels of the photosphere and chromosphere without a preferred height and at a faster speed than is predicted by the Sweet-Parker reconnect ion model using the classical value of electric conductivity. Introducing an anomalous magnetic diffusivity 10-100 times the classical value is one of the possible ways of explaining the fast reconnect ion as inferred from observations.

태양광/$TiO_2$ 반응기용 반사판 최적화에 관한 연구 (A Study on the Optimization of Reflector for Reactor Using Solar $Light/TiO_2$)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.373-380
    • /
    • 2006
  • The photocatalytic reactor using immobilized $TiO_2$ on silicone sealant was studied bench scale using solar light as the source of radiation. The influences of parameters such as shape, polishing extent and size of reflector, distance between reactor and reflector, an angle of inclination between reactor system and ground, were studies using Rhodamine B (RhB) as a model compound. respectively. The decolorization of round type among the reflector shapes was higher than that of the polygon and W type. The polishing extent of the reflector did not show the decolorization largely. The optimum size of reflector and distance between reactor and reflector were 38 cm and 6 cm, respectively.

Study on the reflectance characteristics of materials for dye sensitized solar cell materials

  • Jung, In-Sung;Park, Book-Sung;Kim, Il-Ho;Hong, Gen-Gi;Kim, Chul-Ju
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.447-447
    • /
    • 2008
  • 본 논문의 목표는 염료감응 태양전지의 재료적 특성중 반사율을 측정하여 가장 투명한 dye sensitized solar cell을 제조하기 위한 기초자료를 도출하기 위함이다. 먼저 염료감응 태양전지의 재료중 산화물질인 TiO2,SnO2,ZnO,$Nb_2O_5$ 10~50nm두께로 ITO 기판위에 코팅하여 UV-VIS를 통해 파장별 반사 특성을 분석하였다. 또한, 동일한 시료를 사용하여 FESEM을 통한 표면 Morphology를 확인하였다. 기판제료인 TiO2,dye(염료),TCO,glass,ICO 에 대해서도 동일한 특성분석을 하였다.

  • PDF

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.