• Title/Summary/Keyword: solar storm

Search Result 71, Processing Time 0.029 seconds

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF

Recent International Activity of KASI for Space Weather Research

  • Cho, Kyung-Suk;Park, Young-Deuk;Lee, Jae-Jin;Bong, Su-Chan;Kim, Yeon-Han;Hwang, Jung-A;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

MAGNETIC PROPERTIES OF INNER MAGNETOSPHERE DURING GEOMAGNETIC STORMS INFERRED FROM A TSYGANENKO MAGNETIC FIELD MODEL

  • Lee, D.Y.;Kim, K.C.;Choi, C.R.;Kim, H.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • In this paper we report some properties of inner magnetospheric structure inferred from the T01_s code, one of the latest magnetospheric models by Tsyganenko. We have constructed three average storms representing moderate, strong, and severe intensity storms using 95 actual storms. The three storms are then modelled by the T01_s code to examine differences in magnetic structure among them. We find that the magnetic structure of intense storms is strikingly different from the normal structure. First, when the storm intensity is large, the field lines anchored at dayside longitudinal sectors become warped tailward to align to the solar wind direction. This is particularly so for the field lines anchored at the longitudinal sectors from postnoon through dusk. Also while for the moderate storm the equatorial magnetic field near geosynchronous altitude is found to be weakest near midnight sector, this depression region expands into even late afternoon sector during the severe storm. Accordingly the field line curvature radius at the equator in the premidnight geosynchronous region becomes unusually small, reaching down to a value less than 500 km. We attribute this strong depression and the dawn-dusk asymmetry to the combined effect from the enhanced tail current and the westward expansion/rotation of the partial ring current.

Some Statistical Characteristics of Substorms Under Northward IMF Conditions (북쪽방향 IMF 조건하에서 발생하는 서브스톰의 통계적 특성)

  • Lee, Ji-Hee;Lee, D.Y.;Choi, K.C.;Jeong, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.451-466
    • /
    • 2009
  • While substorms are known to generally occur under southward IMF conditions, they can sometimes occur even under northward IMF conditions. In this paper, we studied the substorms that occurred in May, 2000 to 2002 to examine some statistical characteristics of the IMF and solar wind associated with northward IMF substorms. We focused on the cases where two or more substorms occurred successively under northward IMF conditions. Also, by checking Sym-H index associated with each of the substorms we determined whether or not there is any association of such northward IMF substorm occurrence with storm times. We also examined statistical properties at geosynchronous altitude in terms of magnetic field dipolarization and energetic particle injection. The following results were obtained. (i) Most of the northward IMF substorms occurred under average solar wind conditions. The majority of them occurred within 2 hrs duration of northward IMF Bz state, but there are also a nonnegligible number of substorms that occurred after a longer duraiton of northward IMF Bz state. (ii) While most of the substorms occurred as isolated from a magnetic storm time, those that occurred in a magnetic storm time show a higher average value of IMF and solar wind than that for the isolated substorms. (iii) About 55% of the substorms were associated with the IMF clock angle that can possibly allow dayside reconnection, and the other 45% were associated with more or less pure northward IMF conditions. Therefore, for the latter cases, the energy input from the solar wind into the magnetosphere should be made by other way than the dayside reconnection. (iv) For most of the substorms, the magnetic field dipolarizations and energetic particle injections at geosynchronous altitude were identified to be generally weak. But, several events indicated strong magnetic field dipolarizations and energetic particle injections.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

Text Mining Analysis of News Articles Related to 'Space Hazard' ('우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구)

  • Jo, Hoon;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.224-235
    • /
    • 2022
  • This study aimed to confirm the status of media reports on space hazards using topic modeling analysis of media articles that are related to space hazards for the past 12 years. Therefore, Latent Dirichlet Allocation (LDA) analysis was performed by collecting over 1200 space hazards articles between 2010 and 2021 on solar storm, artificial space objects, and natural space objects from BIGKins news platform. The articles related to solar storm focused on three topics: the effect of solar explosion on satellites; effect of solar explosion on radio communication in Korea, centered on the Korean Space Weather Center; and relationship between aircrew and space radiation. The articles related to artificial space objects focused on three topics: the threat of space garbage to satellite and space stations and the transition of useful objects into space junk; the relationship between space garbage and humanity as shown in movies; and the effort of developed countries for tracking, monitoring, and disposing of space garbage. The articles related to natural space objects focused on two topics: International Space Agency's tracking and monitoring of near-Earth asteroids and the countermeasures of collisions, and the evolution and extinction of dinosaurs and mammals, with a focus on the collisions of asteroids or comets. Therefore, this study confirmed that domestic media play a role in conveying dangers of space hazards and arousing the attention of public using a total of eight themes in various fields such as society and culture, and derived education method and policy on space hazards.

Simultaneous Forbush Decrease caused by a CME shot by the STEREO

  • Oh, Su-Yeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • The sudden decrease of galactic cosmic ray (GCR) intensity observed by ground neutron monitor (NM) is called a Forbush decrease (FD) event. The intensity time profile of FD event looks like the geomagnetic storm visualized by geomagnetic storm index Dst. Oh et al. [2008] and Oh and Yi [2009] classified the FD events into two kinds by criteria of the overlapping simultaneity of main phase in universal time (UT). The FD event is defined simultaneous if the main phase parts observed by the stations distributed evenly around the Earth are overlapped in UT and non-simultaneous if ones are overlapped in each station's local time (LT). They suggested the occurrence mechanisms of two kind FD events related to the interplanetary magnetic structures such as the interplanetary shock (IP shock) and magnetic cloud. According to their model, the simultaneity of FD depends on the strength and propagation direction of interactive magnetic structures overtaking the Earth. Now the STEREO mission can visualize the emergence and propagation direction of the coronal mass ejection (CME) in 3-dimension in the heliosphere. Thus, it is possible to test the suggested mechanisms causing two different types of FD events. One simultaneous FD observed on February 17, 2011 may be caused by a CME heading directly toward the Earth observed on February 15, 2011 by the STEREO mission. The simultaneity of FD event is proved to be a useful analysis tool in figuring out the geo-effectiveness of solar events such as interplanetary CMEs and IP shocks.

  • PDF