• Title/Summary/Keyword: solar space mission

Search Result 97, Processing Time 0.034 seconds

Mission and Conceptual System Design of Solar Sail Testing Cube Satellite CNUSAIL-1 (태양돛 시험용 큐브위성 CNUSAIL-1의 임무 및 시스템 개념설계)

  • Koo, Soyeon;Kim, Gyeonghun;Yoo, Yeona;Song, Sua;Kim, Sungkeun;Oh, Bockyoung;Woo, Beomki;Han, Chang-Gu;Kim, Seungkeun;Suk, Jinyoung;Han, Sanghyuck;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.586-593
    • /
    • 2014
  • The CNUSAIL-1 project aims to develop and operate a 3U-sized cube satellite with solar sail mechanism. The primary mission is to successfully deploy the solar sail in a low earth orbit, and the secondary mission is to collect the scientific data for the effect of the solar sail deployment and operation on orbit maneuver and attitude change of the cube satellite. For this, the bus system will collect and transmit the dynamic data of the satellite and the visual images of the solar sail operation. This paper describes solar sail mission and conceptual design of CNUSAIL-1. The actuation/operation of the solar sail and the bus system are preliminarily designed in terms of attitude control system, communication system, electrical power system, command and data handling system, structure and thermal control system is designed.

Preliminary Analysis on Launch Opportunities for Sun-Earth Lagrange Points Mission from NARO Space Center

  • Song, Young-Joo;Lee, Donghun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • In this work, preliminary launch opportunities from NARO Space Center to the Sun-Earth Lagrange point are analyzed. Among five different Sun-Earth Lagrange points, L1 and L2 points are selected as suitable candidates for, respectively, solar and astrophysics missions. With high fidelity dynamics models, the L1 and L2 point targeting problem is formulated regarding the location of NARO Space Center and relevant Target Interface Point (TIP) for each different launch date is derived including launch injection energy per unit mass (C3), Right ascension of the injection orbit Apoapsis Vector (RAV) and Declination of the injection orbit Apoapsis Vector (DAV). Potential launch periods to achieve L1 and L2 transfer trajectory are also investigated regarding coasting characteristics from NARO Space Center. The magnitude of the Lagrange Orbit Insertion (LOI) burn, as well as the Orbit Maintenance (OM) maneuver to maintain more than one year of mission orbit around the Lagrange points, is also derived as an example. Even the current work has been made under many assumptions as there are no specific mission goals currently defined yet, so results from the current work could be a good starting point to extend diversities of future Korean deep-space missions.

Development of a diagnostic coronagraph on the ISS: BITSE overview and progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Park, Young-Deuk;Newmark, Jeffrey;Gopalswamy, Nat.;Yashiro, Seiji;Reginald, Nelson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.56.4-56.4
    • /
    • 2019
  • The Korea Astronomy and Space Science Institute (KASI) has been collaborating with the NASA's Goddard Space Flight Center, to install a coronagraph on the International Space Station (ISS). The coronagraph will utilize spectral information to simultaneously measure electron density, temperature, and velocity. As a first step, we developed a new coronagraph and launched it on a stratospheric balloon in 2019 (BITSE) from Fort Sumner, New Mexico in USA. As the next step, the coronagraph will be be further developed, installed and operate on the ISS (CODEX) in 2022 to address a number of important questions (e.g., source and acceleration of solar wind, and coronal heating) in the physics of the solar corona and the heliosphere. Recently, BITSE has been launched at Fort Sumner, New Mexico. In this presentation, we will introduce the BITSE mission and discuss recent progress.

  • PDF

Competition between ICME and crustal magnetic field on the loss of Mars atmosphere

  • Hwang, Junga;Jo, Gyeongbok;Kim, Roksoon;Jang, Soojeong;Cho, Kyungsuk;Lee, Jaejin;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.3-63
    • /
    • 2017
  • The Mars Atmosphere and Volatile (MAVEN) mission has been providing valuable information on the atmospheric loss of Mars since its launch in November 2013. The Neutral Gass and Ion Mass Spectrometer (NGIMS) onboard MAVEN, was developed to analyze the composition of the Martian upper atmospheric neutrals and ions depending on various space weather conditions. We investigate a variation of upper atmospheric ion densities depending on the interplanetary coronal mass ejections (ICMEs). It is known that the Mars has a very weak global magnetic field, so upper atmosphere of Mars has been strongly affected by the solar activities. Meanwhile, a strong crustal magnetic field exists on local surfaces, so they also have a compensating effect on the upper atmospheric loss outside the Mars. The weak crustal field has an influence up to 200km altitude, but on a strong field region, especially east longitude of $180^{\circ}$ and latitude of $-50^{\circ}$, they have an influence over 1,400km altitude. In this paper, we investigated which is more dominant between the crustal field effect and the ICME effect to the atmospheric loss. At 400km altitude, the ion density over the strong crustal field region did not show a significant variation despite of ICME event. However, over the other areas, the variation associated with ICME event is far more overwhelming.

  • PDF

Development of Korean Preliminary Lunar Mission Design Software (한국형 달탐사 임무 예비 설계 소프트웨어의 개발)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Shim, Eun-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.357-367
    • /
    • 2008
  • Preparing for future Korean Lunar missions, preliminary Lunar mission design software is developed using a impulsive thrusting method. Developed software is capable of design and analysis every required mission phases to design Lunar mission, including the Earth departure, Lunar transfer, Lunar arrival and mission operation phases. Also, assuming that KSLV-II is selected as a launch vehicle, future Korean Lunar explorer's mass budget is estimated based on driven optimal trajectory characteristics. Tracking analysis is also performed using Deep Space Network including angle geometry analysis between Earth - Moon - Lunar explorer - Sun which are very important for communication, solar panel pointing strategy and eclipse analysis when Lunar missions are under designing phase.

Satellite Trajectory Correction Maneuver for Lunar Mission based on Three-Body Dynamics (달탐사 임무를 위한 3체 운동방정식 기반의 인공위성 궤적보정 기동)

  • Cho, Dong-Hyun;Jung, Young-Suk;Lee, Dong-Hun;Jung, Bo-Young;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.875-881
    • /
    • 2010
  • During the lunar mission, spacecraft are subject to various unexpected disturbance sources such as third body attraction, solar pressure and operating impulsive maneuver error. Therefore, efficient trajectory correction maneuver (TCM) strategy must be required to follow the designed mission trajectory. In the early days of space exploration, the mission trajectory has been designed by using patched conic approach based on two-body dynamics for the lunar mission. Thus the TCM based on two-body dynamics has been usually adopted. However, with the advanced in computing power, the mission trajectory based on three-body dynamics is attempted recently. Thus, these approaches based on two-body dynamics are essentially different from real environment and large amount of energy for the TCM is required. In this work, we study the trajectory correction maneuver based on three-body dynamics.

Swarm Satellite Observations of the 21 August 2017 Solar Eclipse

  • Hussien, Fayrouz;Ghamry, Essam;Fathy, Adel;Mahrous, Salah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-34
    • /
    • 2020
  • On 21 August 2017, during 16:49 UT and 20:02 UT period, a total solar eclipse started. The totality shadow occurred over the United States in time between ~17:15 UT and ~18:47 UT. When the solar radiation is blocked by the moon, observations of the ionospheric parameters will be important in the space weather community. Fortunately, during this eclipse, two Swarm satellites (A and C) flied at about 445 km through lunar penumbra at local noon of United States in the upper ionosphere. In this work, we investigate the effect of the solar eclipse on electron density, slant total electron content (STEC) and electron temperature using data from Swarm mission over United States. We use calibrated measurements of plasma density and electron temperature. Our results indicate that: (1) the electron density and STEC have a significant depletion associated with the eclipse; which could be due to dominance of dissociative recombination over photoionization caused by the reduction of ionizing extreme ultraviolet (EUV) radiation during the eclipse time (2) the electron temperature decreases, compared with a reference day, by up to ~150 K; which could be due to the decrease in photoelectron heating from reduced photoionization.

A Conceptual Design of HAUSAT-1(CubeSat) Satellite

  • Kim, Joon-Tae;Kim, Young-Suk;Seo, Seung-Won;Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.61-73
    • /
    • 2002
  • This paper addresses the conceptual design results of the HAUSAT-1 (Hankuk Aviation University SATellite-1), developed by Space System Research Lab. of Hankuk Aviation Univ., which is a new generation picosatellite. This project has been funded by Korean Government for the purpose of developing the space core technology. This is the first attempt at the level of university in Korea to develop the satellite weighing less than 1kg and accelerates opportunities with low construction, low launch cost space experiment platforms. The purpose of the HAUSAT-1 project is to offer graduate and undergraduate students great opportunities to be able to understand the design process of satellite development as a team member. Its mission objectives are to track its position by the GPS receiver system, to deploy the thin film solar cell panel to generate extra power, and to measure plasma density and temperature with the plasma sensor. The HAUSAT-1 will orbit at the altitude of 650 km with 65 degree inclination angle with 12 months of design mission life. It is planned to be launched on November 2003 by Russian launch vehicle "Dnepr".

An Analysis of the KOMPSAT-1 Operational Orbit Evolution Over 3 Years (아리랑 1호 임무기간 3년 동안의 궤도변화 분석)

  • Kim,Hae-Dong;Choe,Hae-Jin;Kim,Eun-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.40-50
    • /
    • 2003
  • The operational orbit evolution of the KOMPSAT-l over 3 years was analyzed. During LEOP, four orbit maneuvers were performed to obtain the optimized orbit and eight safe-hold modes happened. The effects of unpredictable occurrence of the safe-hold mode and the highest solar activity on the orbit evolution during the mission life were analyzed. The comparison of orbital elements between long-term predicted orbit and determined orbit from observed data was also performed. The operational orbit started from the optimized one was evolved within the boundary of the designed mission orbit except altitude and it was verified the sun-synchronous orbit was successfully maintained.

An Operating Software Development of A Prototype Coronagraph for The Total Solar Eclipse in 2017

  • Park, Jongyeob;Choi, Seonghwan;Kim, Jihun;Jang, Be-ho;Bong, Su-Chan;Baek, Ji-Hye;Yang, Heesu;Park, Young-Deuk;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2017
  • We develop a coronagraph to measure the coronal electron density, temperature, and speed by observing the linearly polarized brightness of solar corona with 4 different wavelengths. Through the total solar eclipse on 21 August 2017, we test an operating software of a prototype coronagraph working with two sub-systems of two motorized filter wheels and a CCD camera that are controlled by a portable embedded computer. A Core Flight System (CFS) is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. We use the CFS software framework to develop the operating software that can control the two sub-systems asynchronously in an observation scenario and communicate with a remote computer about commands, housekeeping data through Ethernet. The software works successfully and obtains about 160 images of 12 filter sets (4 bandpass filters and 3 polarization angles) during the total phase of the total solar eclipse. For the future, we can improve the software reliability by testing the software with a sufficient number of test cases using a testing framework COSMOS. The software will be integrated into the coronagraph for balloon-borne experiments in 2019.

  • PDF