• Title/Summary/Keyword: solar radiation quantity

Search Result 33, Processing Time 0.019 seconds

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

The Related Research with the Land Cover State and Temperature in the Outer Space of the Super-High-Rise Building (초고층 건축물 외부공간의 토지 피복 상태와 온도와의 관계 연구)

  • Han, Bong-Ho;Kim, Hong-Soon;Jung, Tae-Jun;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.751-762
    • /
    • 2010
  • In order to understand the influence that the plant cover condition of the high-rise building outer space causes to the temperature change, we selected 12 high-rise building constructed in Seoul City. The land cover type of the outside was classified into six type(outer road, paved surface, shrub/grassland, single-layer tree planting-site, multi-layer planting-site, and waterscape facilities) and the temperature was measured at the representative point for each type in order to analyze the land cover temperature differential for each type of the high-rise building outer space. The study area showing the temperature tendency to be similar based upon one way analysis of variance after selecting the central part of the outer road for a control and measuring a temperature in order to consider the neighboring environmental difference of the dozen building was classified into 4 groups. As to the one-way layout result of variance analysis with the land cover type of the classified group and outer space temperature, the single-layer tree planting-site, waterscape facilities, and multi-layer planting-site belonged mainly to the low temperature section. The shrub/grassland, paved surface, and outer road belonged to the high temperature region. The temperature difference between low temperature region and high temperature region is about $1.06{\sim}6.17^{\circ}C$. However, the temperature in the Outer Space of the Super-High-Rise Building was variously appeared by the influence such as the cramped of the created planting-site and waterscape facilities area, the increase of amount of solar radiation and the reduction of reflection amount of light due to building etc.. Thus, the composition all produced the area of the green quantity required for each space and water space in advance. It was determined that there were the minimum area displaying an effect and the necessity to it secures the green quantity.

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.