• Title/Summary/Keyword: solar radiation effect

Search Result 341, Processing Time 0.023 seconds

Temperature Correction of Solar Radiation on Clear Sky Using by Modified Pyranometer (특수일사계를 이용한 맑은 날 일사량의 온도 보정)

  • Zo, Il-Sung;Jeong, Myeong-Jae;Lee, Kyu-Tae;Jee, Joon-Bum;Kim, Bu-Yo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • Pyranometer have many uncertainty factors (sensitivity function, thermal offset, other spectral effect, geometric, environment, and equipment etc.) than pyrheliometer. The solution for most of the uncertainty factors have been researched, but the problem for thermal offset is being continued research so far. Under the clear sky, due to the thermal offset of pyranometer, the diffuse and global radiation have been negative value for the nighttime and lower value for the daytime, respectively. In order to understand the uncertainty of the thermal offset effect, solar radiation are observed and analyzed using Ji and Tsay method and data from modified pyranometer. As a result of performing temperature correction using the modified pyranometer, the slope (dome factor; k) and intercept ($r_0$) from a linear regression method are 0.064 and $3.457g{\cdot}m^{-2}{\cdot}k^{-1}$, respectively. And the solar radiation is decreased significantly due to the effect of thermal offset during nighttime. The solar radiation from modified pyranometer increased approximately 8% higher than its observed by general pyranometer during daytime. By the way, these results did not generalize because its result is for only single case in clear sky. Accordingly, it is to required for accurate results obtained by the various cases (clear, cloudy and rainy) with longterm observations.

A Basic Study to Reveal the Relationships between Solar Thermal Radiation and Thermographic Images (태양 복사와 열화상이미지의 관계에 대한 기초 연구)

  • Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2020
  • Among the factors that must be taken into account when using thermal imaging cameras that are expanding their application to various fields, a basic study was conducted focusing on temperature on the effect of solar radiation on the photographed thermal image. Through all experiments, in order to use an image taken with a thermal imaging camera for an object installed or located outdoors, a separate temperature correction according to the size of solar radiation or a separate device to block the effect of solar radiation must be additionally installed. Since the temperature of the same object may vary in the thermal image taken indoors or outdoors, it is necessary to calibrate it through comparison with other temperatures as a reference point. In the case of measuring the temperature of a glossy surface such as metal indoors with a thermal imaging camera, it was confirmed that an environment that can remove the light reflection effect by the glossy surface must be constructed and photographed.

Compensation for The Solar Radiation Effect of Radiosonde's Temperature Sensor Using Solar Panel (솔라패널을 이용한 라디오존데 온도센서의 일사보정)

  • Park, Myeong-Seok;Lee, Jin-Wook;Jeung, Se-Jin;Jang, Jea-Won
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.283-294
    • /
    • 2019
  • For the upper air observations, a temperature measurement using radiosonde is a common method, and the compensation of solar radiation effects in the radiosonde temperature sensor is an important factor. In this paper, we present various experiments and compensation methods of the radiosonde temperature sensor to overcome the errors caused by the movement of the radiosonde rotation, etc. The methods and procedures of this study are as follows. First, we used the solar simulator to analyze the temperature variation and solar effect of the temperature sensor in the radiosonde according to the insolation. We also analyzed the temperature variation and solar effect of the temperature sensor according to the incident angle between the solar simulator and radiosonde. Second, we measured and analyzed solar radiation absorbed by solar cells attached to radiosonde. Third, we present combined compensate solution of the first and the second experiment results, to overcome errors caused by insolation effects in the radiosonde temperature sensors. Fourth, we compared that the reference temperature in similar environment with the upper air conditions, to verify the new radiated compensation performance of the radiosonde temperature sensor. Finally, the radiosonde fabricated in this study was raised to the atmosphere, and the laser correction algorithm proposed through experiments was reviewed. As a result of the radiosonde SRS-10 produced in this study, the temperature deviation from Vaisala RS92 was $0.057^{\circ}C$ in nighttime observation, $0.17^{\circ}C$ in daytime observation, It is expected that the GRUAN under WMO will be able to obtain a high test rating of 5.0.

Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer (하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석)

  • Choi, Dong-Ho;Lee, By-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

Effects of frame ratio and length on the transmissivity of solar radiation in glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 유리온실내의 일사 투과율에 미치는 골조율 및 동길이의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 1999
  • This study was conducted to investigate the effects of the frame ratio and greenhouse length on the transmissivities of direct and diffuse solar radiation in glasshouse using a computer simulation model developed by Kim and Lee(1997). Transmissivity of diffuse solar radiation slightly decreased as the frame ratio increased. There was no effect of number of spans on the transmissivity of diffuse solar radiation at the same frame ratio. In single or multispan glasshouse, transmissivity of direct solar radiation was 1.5-3.0% higher at the frame ratio of 11.3% than those at the frame ratio of 14.9%. Also the transmissivity of direct solar radiation was 1.5-3.0% lower at the frame ratio of 18.3% than those at the frame ratio of 14.9%. Effect of the increased or decreased frame ratio on the transmissivity of direct solar radiation was similar in I-W or S-N glasshouse. Since the high transmissivity of direct solar radiation exerted a beneficial influence upon the plant growth during winter season, the light and endurable structural members were needed to maximize the transmission of solar radiation in glasshouse. Transmissivity of direct solar radiation in I-W or S-N glasshouse did not vary with the length of 24.5m long or more.

  • PDF

The Calculation on the Optimum Angle of Tilt Type Window by Length of Transmitted Solar Radiation (투과일사의 유입길이에 따른 Tilt 창호의 적정 기울기 산정)

  • Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.635-640
    • /
    • 2010
  • This study is suggested tilt window type to be restrained solar radiation through vertical window type in buildings. The shading and aesthetical effect of buildings would be solved by installation of tilt window type. For investigate optimum an angle of tilt window and building azimuth in reference region, the distance of transmitted solar radiation is calculated. The results of calculation showed optimum an angle of tilt window is obtained $7^{\circ}$ that the distance of transmitted solar radiation is 20% of 1.5m of balcony width. In case of an tilt window angle of $7^{\circ}$, the optimum building azimuth is showed $SW15^{\circ}{\sim}SE15$.

The Variation of UV Radiation by Cloud Scattering at King Sejong Station in West Antarctica (남극 세종기지에서의 구름 산란에 의한 자외선 변화)

  • Lee, Kyu-Tae;Lee, Bang-Yong;Won, Young-In;Kim, Youn-Joung;Lee, Won-Hak;Jee, Joon-Bum
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.133-143
    • /
    • 2004
  • For the purpose of understanding the cloud scattering effect of UV radiation at King Sejong station In West Antarctica, we analyzed the data measured by UV-Biometer at surface and compared its result with solar radiation model. The parameterization of UV radiation by cloud ice crystal was applied to solar radiation model and the sensitivity of this model for the variation of ice crystal was tested. The cloud optical thickness was calculated by using this solar radiation model. It was compared the result from calculation with CERES satellite data. In solar radiation model, the UV radiation was less scattered with increase of ice crystal size in cloud and this scattering effect was more important to UV-A radiation than Erythemal UV-B radiation. But scattering effects by altitude of cloud was not serious. The calculated cloud optical thicknesses in Erythemal UV-B and UV-A region were compared with CERES satellite data and the result by UV-A was more accurate than Erythemal UV-B region.

The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space (태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구)

  • Yeon, Seong Hyeon;Lee, Hyo Joon;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

A Simulation Model for the Analysis of Direct and Diffuse Solar Radiation in Glasshouse - Effect of orientation on the transmissivity of direct solar radiation in single- span glasshouse - (유리온실내의 직달일사 또 산란일사 해석을 위한 시뮬레이션 모형 - 동방위가 단동 온실내의 직달일사 투과율에 미치는 영향 -)

  • 김용현;이석건
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.176-182
    • /
    • 1997
  • A simulation model for the analysis of the transmissivity of direct and diffuse solar radiation In glasshouse was developed. This model would be applicable to investigate the influences of time of year, orientation and slope of glasshouse, dimensions of the frames used, and latitude of the site on the transmissivity of direct and diffuse solar radiation in single-span or multispan glasshouse. The transmissivity of diffuse solar radiation was 60.4% for the single-span glass-house. It was independent of both orientation and time of year, During the winter season, the transmissivity of direct solar radiation was 67~69% for the E-W orientation single-span glasshouse, which was 14~16% higher than that for the S-N orientation. Oppositely the transmissivity of direct solar radiation for the S-N orientation was higher than that for the E-W orientation. during the autumn season. There was no influence of the latitude In the country on the transmissivity of direct solar radiation.

  • PDF

A Study on the Performance of Natural Ventilation of Solar Chimney Using Stack Effect (연돌 효과를 이용한 태양열 굴뚝의 자연환기 성능에 관한 연구)

  • Cho, S.W.;Lee, J.Y.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.35-43
    • /
    • 2001
  • The results of numerical simulation on the performance of a solar chimney system in building are described. The inside surface temperature of four walls within the solar chimney arc calculated with solar radiation and outdoor temperature in summer. The air within the solar chimney is heated by conduction, convection and radiation. Air temperature distribution from the bottom to the top and outlet air temperature can be obtained by solving energy balance equation. Since the buoyance or stack effect is affected by temperature difference between the bottom and the top within the solar chimney. It is evaluated using inlet and outlet temperatures. It is expected that natural ventilation by the solar chimney of witch the height is 7.8m and the cross sectional area is $4.93m^2$ can provide about $6400m^3/h$ on sunny day.

  • PDF