• 제목/요약/키워드: solar minimum

검색결과 316건 처리시간 0.026초

Variation in Solar Limb Darkening Coefficient Estimated from Solar Images Taken by SOHO and SDO

  • Moon, Byeongha;Jeong, Dong-Gwon;Oh, Suyeon;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.99-103
    • /
    • 2017
  • The sun is not equally bright over the whole sphere, but rather is darkened toward the limb. This effect is well-known as limb darkening. The limb darkening coefficient is defined by the ratio of the center intensity to limb intensity. In this study, we calculate the limb darkening coefficient using the photospheric intensity estimated from solar images taken by solar and helispheric observatory (SOHO) and solar dynamics observatory (SDO). The photospheric intensity data cover almost two solar cycles from May 1996 to December 2016. The limb darkening coefficient for a size of 0.9 diameter is about 0.69 and this value is consistent with solar limb darkening. The limb darkening coefficient estimated from SOHO shows a temporal increase at solar maximum and a gradual increase since the solar minimum of 2008. The limb darkening coefficient estimated from SDO shows a constant value of about 0.65 and a decreasing trend since 2014. The increase in the coefficient reflects the effect of weakened solar activity. However, the decrease since 2014 is caused by the aging effect.

증발량 산정을 위한 입사태양복사식 비교 (Comparison of incoming solar radiation equations for evaporation estimation)

  • 임창수
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Solar North-South Asymmetry and Hilbert Transform Analysis

  • Heon-Young Chang
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.125-135
    • /
    • 2023
  • Here, we investigated the observed sunspot areas with respect to latitudes using the Hilbert transform technique. Conventional study of the cyclic patterns of sunspots is based on the Lomb-Scargle periodogram, which only obtains the amplitude information. In comparison, our approach characterizes the amplitude as well as the phase of solar activity. We demonstrated the solar North-South asymmetry in the instantaneous amplitude by analyzing daily sunspot data set spanning from the solar cycles 11 to 24. Our findings confirm that the northern hemisphere is dominant in the solar cycles 14, 15, 16, 18, and 20. Unlike the amplitude, the North-South asymmetry in the period of solar activity could not be established. We have also found that the standard deviation as a measure of fluctuation in the phase derivative is minimum in the latitude band 10° < l < 20°, and the fluctuations obtained for latitudes above 30° are considerable.

KIERDISH II 태양열 집광시스템의 플럭스밀도 분포 (Flux Density Distribution of the Dish Solar Concentrator (KIERDISH II))

  • 강명철;강용혁;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.11-18
    • /
    • 2004
  • A solar concentrator, named KIERDISH II, was built at KIER in order to investigate the feasibility of high temperature solar energy application system. The constructed concentrator is a dish type solar concentrator with a focal length of 4.68m and a diameter of 7.9m. To successfully operate KIERDISH II, optimal design of the absorber is very important and flux density distribution has to be known. The focal flux density distribution on the receiver was measured. We have observed the shape and size of flux images and evaluated percent power within radius. Flux density distribution is usually measured by a CCD(charge coupled device) camera and a radiometer. In this paper we present a flux mapping method to estimate the characteristic features of the flux density distribution in the focal region of solar concentrator. The minimum radius of receiver is found to be 0.15m and approximately 90% of the incident radiation is intercepted by receiver aperture.

Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2013
  • The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

Frequency of Solar Spotless Days and Flare Index as Indices of Solar Cycle Activity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.145-148
    • /
    • 2014
  • There was a research on the prolongation of solar cycle 23 by the solar cyclic variation of solar, interplanetary geomagnetic parameters by Oh & Kim (2013). They also suggested that the sunspot number cannot typically explain the variation of total solar irradiance any more. Instead of the sunspot number, a new index is introduced to explain the degree of solar activity. We have analyzed the frequency of sunspot appearance, the length of solar cycle, and the rise time to a solar maximum as the characteristics of solar cycle. Then, we have examined the predictability of solar activity by the characteristics of preceding solar cycle. We have also investigated the hemispheric variation of flare index for the periods that the leading sunspot has the same magnetic polarity. As a result, it was found that there was a good correlation between the length of preceding solar cycle and spotless days. When the length of preceding solar cycle gets longer, the spotless days increase. It is also shown that the shorter rise time to a solar maximum is highly correlated with the increase of sunspots at a solar maximum. Therefore, the appearance frequency of spotless days and the length of solar cycle are more significant than the general sunspot number as an index of declining solar activity. Additionally, the activity of flares leads in the northern hemisphere and is stronger in the hemisphere with leading sunspots in positive polarity than in the hemisphere with leading sunspots in negative polarity. This result suggests that it is necessary to analyze the magnetic polarity's effect on the flares and to interpret the period from the solar maximum to solar maximum as the definition of solar cycle.

태양에너지를 이용한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발 (Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System Using Solar Energy)

  • 노정근;송현갑
    • 한국태양에너지학회 논문집
    • /
    • 제21권2호
    • /
    • pp.27-34
    • /
    • 2001
  • The greenhouse heating system using solar energy has been realized in the protective agriculture in this study in order to analyse the thermal energy characteristics of the system the effects of ambient air temperature, solar radiation, relative humidities and water content of ambient air on the greenhouse air temperature were investigated through computer simulation experimental analysis for validation of the simulation. The results from this study are summarized as follows: 1) The expected values of inside air temperature for the system solar energy were very much close to the experimental values. 2) In the system using solar energy, the expected values of daytime surface temperature of soil by computer simulation were very much similar to the measured values, but those of nighttime were higher than the measured value by almost $2.5^{\circ}C$. 3) Heat loss of daytime was found to be larger than that of night time as much as 2.0 to 4.2 times for the system using solar energy. 4) In the system using solar energy. while the ambient air temperature varied between $-7^{\circ}C$ and $-3.8^{\circ}C$, the temperature of the inside air was maintained between $0^{\circ}C$ and $22^{\circ}C$. 5) At the minimum ambient temperature of $-7^{\circ}C$, the temperature of the inside air was $0^{\circ}C$.

  • PDF

Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

  • Kim, Roksoon;Park, Jongyeob;Baek, Jihye;Kim, Bogyeung
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.41.1-41.1
    • /
    • 2017
  • It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  • PDF

Characteristics of Environmental Solar Ultraviolet Irradiance

  • Sasaki, Masako;Oyanagi, Takehiko;Takeshita, Shu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.154-157
    • /
    • 2002
  • Direct, continuous, and accurate measurements of solar ultraviolet irradiance (290-400 nm: UVR) have been carried out since 1990, by using both band-spectral ultraviolet-B (290-320 nm: UV-B) and ultraviolet-A (320-400 nm: UV-A) radiometers at Tokai University in Hiratsuka, Japan (35$^{\circ}$N, 139$^{\circ}$E). From our observations, the following findings are provided: 1) an increasing trend in solar UV -B from Oct. 1990 to Sept. 2000; 2) a regional comparison of solar UVR in Japan; 3) the distinct characteristics of UV-B and UV-A irradiance, such as diffuse property, daily and seasonal variation; and 4) human body protection against solar UVR. An increasing 10-year trend in global solar UV - B in Hiratsuka corresponded to a decrease in the total ozone amount measured at Tsukuba (36$^{\circ}$N, 140$^{\circ}$E), giving supportive evidence for a direct link between these two parameters. Furthermore, a strong correlation was found between solar UV-B and total ozone amount from results of UVR measurements at four Tokai University monitoring stations dispersed throughout Japan. Additional results revealed different diffuse properties in global solar UV and in global solar total (300-3000 nm: Total) irradiances. For example, in the global UVR, the diffuse component was dominant: about 80 % independent of weather, with more than 60 % of global UV-B, and more than 50% of global UV-A with even a cloudless clear sky. On the other hand, the portion of the diffuse in the global total irradiance was very low, less than 10 % on a cloudless clear day. Daily and seasonal variations of UV -B and UV -A irradiances were found to be quite different, because of the marked dependence of UV -B irradiance on the atmospheric ozone amount. Moreover, UV -B irradiance showed large daily and seasonal variations: the ratio between maximum and minimum irradiances was more than 5. In contrast, the variation in UV-A was small: the ratio between maximum and minimum was less than 2. Three important facts are proposed concerning solar UVR protection of the human body: 1) the personal minimal erythema dose (MED); 2) gender based difference in MED values; and 3) proper colors for UVR protective clothing.

  • PDF

무선 센서네트워크 환경에서 태양전지의 적합모델 제안 (Fitting Model Proposal of Solar Cells for Wireless Sensor Network)

  • 제갈한민;공인엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.845-848
    • /
    • 2010
  • 무선 센서네트워크 환경에서 발생하는 다양한 정보는 각 노드들에 의해 수집되어 분석된 후 정보를 필요로 하는 원거리의 노드에게 보내어진다. 정보 교환을 통해 소모되는 전력량을 감안하여 최소한의 전력을 유지하지 못하면 노드와 네트워크 수명이 단축되고 협력 행동을 완수하지 못한다. 네트워크 수명을 최대화하기 위해 각 노드들이 태양전지를 이용해 전력을 공급받아 유지하는 연구가 진행되어왔다. 그에따라 전력을 고려한 적합한 전지가 모델화되어야 한다. 본 논문에서는 무선 센서네트워크 환경에서 전력 충전, 방전을 고려하여 적합한 태양전지 모델을 제시한다.

  • PDF