• Title/Summary/Keyword: solar limb darkening

Search Result 3, Processing Time 0.018 seconds

Variation in Solar Limb Darkening Coefficient Estimated from Solar Images Taken by SOHO and SDO

  • Moon, Byeongha;Jeong, Dong-Gwon;Oh, Suyeon;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • The sun is not equally bright over the whole sphere, but rather is darkened toward the limb. This effect is well-known as limb darkening. The limb darkening coefficient is defined by the ratio of the center intensity to limb intensity. In this study, we calculate the limb darkening coefficient using the photospheric intensity estimated from solar images taken by solar and helispheric observatory (SOHO) and solar dynamics observatory (SDO). The photospheric intensity data cover almost two solar cycles from May 1996 to December 2016. The limb darkening coefficient for a size of 0.9 diameter is about 0.69 and this value is consistent with solar limb darkening. The limb darkening coefficient estimated from SOHO shows a temporal increase at solar maximum and a gradual increase since the solar minimum of 2008. The limb darkening coefficient estimated from SDO shows a constant value of about 0.65 and a decreasing trend since 2014. The increase in the coefficient reflects the effect of weakened solar activity. However, the decrease since 2014 is caused by the aging effect.

ILLUMINANCE DURING A SOLAR ECLIPSE WITH LIMB DARKENING: A MATHEMATICAL MODEL

  • Lee, Sung Hwan;Lee, Siyul
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.111-116
    • /
    • 2012
  • We present a mathematical model that predicts the variation of illuminance during a solar eclipse, considering continuous effects of limb darkening. We assume that (1) the Sun and the Moon constitute perfect spheres, (2) the Moon crosses the Sun with a constant apparent velocity, and (3) sunspots, prominences, and coronae can be neglected. We compare predictions of this model with actual measurements made by M$\ddot{o}$llmann & Vollmer (2006) during a total solar eclipse in Turkey, and with predictions of existing models. The new model is shown to describe the actual phenomenon more accurately than existing models.

Heat-Flux Analysis of Solar Furnace Using the Monte Carlo Ray-Tracing Method (몬테카를로 광선추적법을 이용한 태양로의 열유속 해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.989-996
    • /
    • 2011
  • An understanding of the concentrated solar flux is critical for the analysis and design of solar-energy-utilization systems. The current work focuses on the development of an algorithm that uses the Monte Carlo ray-tracing method with excellent flexibility and expandability; this method considers both solar limb darkening and the surface slope error of reflectors, thereby analyzing the solar flux. A comparison of the modeling results with measurements at the solar furnace in Korea Institute of Energy Research (KIER) show good agreement within a measurement uncertainty of 10%. The model evaluates the concentration performance of the KIER solar furnace with a tracking accuracy of 2 mrad and a maximum attainable concentration ratio of 4400 sun. Flux variations according to measurement position and flux distributions depending on acceptance angles provide detailed information for the design of chemical reactors or secondary concentrators.