• Title/Summary/Keyword: solar heating of soil

Search Result 27, Processing Time 0.024 seconds

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (3) - Verification Experiment on Commercialization of Cultivation - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(3) - 지중변온가온의 재배실용화 실증시험 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Song, Jae-Kwan;Nah, Kyu-Dong;Ha, Yu-Shin;Kim, Tae-Soo;Kim, Eun-Tae
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • According to the result of the first report and the second report of this study, it was expected that soil heating in a protected cultivation in winter season would affect the initial growth and development of fruit. Based on the result of previous study, we compared height, leaf number, leaf area, fruit weight, crop growth rate (CGR), features and quantity of cucumber for 3 months after planting between the soil heating group and the non-heating group. The result were summarized as follows: The height, leaf number, leaf area and fruit weight of cucumber in the soil heating group were 12.5%, 14.6%, 21.4% and 22.8% higher, respectively, compared to those of cucumber in the non-heating group. Although both the soil heating group and the non-heating group similarly showed an increasing pattern in CGR after transplanting, the soil heating group showed the increased CGR by 12.1% compared to that of the non-heating group. The quantity of cucumber in the soil heating group was about 26% higher than that of the non-heating group. It is assumed that the activation of initial growth and development of fruit in the heating group resulted in the increase of quantity.

Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse (온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성)

  • Park, Kyung-Kyoo;Ha, Yu-Shin;Hong, Dong-Hyuck;Jang, Seung-Ho;Kim, Jin-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

A study about caculating the heating load of the wall of underground space to be used undereground temperature (지중온도를 이용한 지하공간 벽체의 난방부하 계산에 관한 연구)

  • Jeong, Soo-Ill
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The energy crisis is culminating for the life of the fossil fuel in the future which is come to end at $30{\sim}40$ years. Moreover above 90% of the energy in our country depend on importing and the crisis is more seγious than it of other countries. So architects devote low energy house research and it means underground space research have become public opinion. But there is not an accurate and utility method calculating the heating load of underground space. In this study it is proposed that the heating load is calculated by setting adiabatic thichness of soil and predicting underground temperature. The prediction of the underground temperature is calculated by the latitude, the level, the distance from sea, the condition of earth surface.

Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System Using Solar Energy (태양에너지를 이용한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • Ro, J.G.;Song, H.K.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2001
  • The greenhouse heating system using solar energy has been realized in the protective agriculture in this study in order to analyse the thermal energy characteristics of the system the effects of ambient air temperature, solar radiation, relative humidities and water content of ambient air on the greenhouse air temperature were investigated through computer simulation experimental analysis for validation of the simulation. The results from this study are summarized as follows: 1) The expected values of inside air temperature for the system solar energy were very much close to the experimental values. 2) In the system using solar energy, the expected values of daytime surface temperature of soil by computer simulation were very much similar to the measured values, but those of nighttime were higher than the measured value by almost $2.5^{\circ}C$. 3) Heat loss of daytime was found to be larger than that of night time as much as 2.0 to 4.2 times for the system using solar energy. 4) In the system using solar energy. while the ambient air temperature varied between $-7^{\circ}C$ and $-3.8^{\circ}C$, the temperature of the inside air was maintained between $0^{\circ}C$ and $22^{\circ}C$. 5) At the minimum ambient temperature of $-7^{\circ}C$, the temperature of the inside air was $0^{\circ}C$.

  • PDF

Greenhouse Heating Characteristics of Heat Pump-Latent Heat Storage System (열펌프-잠열축열 시스템의 온실 난방 특성 연구)

  • 강연구;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.379-384
    • /
    • 2000
  • In order to use the natural thermal energy as much as possible for greenhouse heating, the air-air heat pump system involved PCM(phase change material) latent heat storage system was composed, and three types of greenhouse heating system(greenhouse system, greenhouse-PCM latent heat storage system, greenhouse-PCM latent heat storage-heat pump system) were recomposed from the greenhouse heating units to analyze the heating characteristics. The results could be concluded as follows; 1) In the greenhouse heated by the heat pump under the solar radiation of 406.39W/$m^2$, the maximum PCM temperature in the latent heat storage system was 24$^{\circ}C$ and the accumulated thermal energy stored in PCM mass of 816kg during the daytime was 100,320kJ. In the greenhouse without heat pump under the maximum solar radiation of 452.83W/$m^2$, the maximum PCM temperature in the latent heat storage system was 22$^{\circ}C$ and the accumulated thermal energy stored during the daytime was 52.250kJ. 2) In the greenhouse-PCM system without heat pump the heat stored in soil layers from the surface to 30cm of the soil depth was 450㎉/$m^2$. 3) In all of the greenhouse heating systems, the difference between the air temperature in greenhouse and the ambient temperature was about 20~23$^{\circ}C$ in the daytime. In the greenhouse without heat pump and PCM latent heat storage system the difference between the ambient temperature and the air temperature in the greenhouse was about 6~7$^{\circ}C$ in the nighttime, in the greenhouse with only PCM latent heat storage system the temperature difference about 7~13$^{\circ}C$ in the nighttime and in the greenhouse with the heat pump and PCM latent heat storage system about 9~14$^{\circ}C$ in the nighttime.

  • PDF

A Development of Automation system and a way to use Solar Energy System Efficiently in. Greenhouse(3) - Effects of growth of soil heating and heating irrigation by methods of soil heating - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치 개발(3) -지중가온 방법에 따른 가온관수와 지중가온의 생육 효과-)

  • 김진현;구건효;김태욱
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.11-18
    • /
    • 1998
  • 우리나라의 산업구조는 1970년 이후에 에너지 과다 소비형인 중공업, 석유화학 공업, 제철공업, 조선, 자동차 등이 집중 육성되었다. 그 결과로 지구 온난화의 주범인 $CO_2$는 1990년-2000년 사이에 128%의 증가(세계 1위)가 예상되어 세계 2위인 스페인에 비하여 무려 5배나 $CO_2$ 발생량을 많이 배출하고 있다. 1997년 제 3차 세계기후협약 이후에 선진국들은 한국을 강력히 규제할 것으로 보여진다. (중략)

  • PDF

Effect of Soil Mulching after Green Manual Crops on Control of Common Scab and Yield Characteristics of Fall Potato (녹비작물재배후 플라스틱필름 멀칭에 따른 가을감자의 더뎅이병 방제 및 수량특성 변화)

  • 송창길;강봉균
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • This experiment was conducted to investigate the changes of rate of infected common scab and yield characteristics of fall potato(Solanum tuberosum L.) where green manual crops had been previously cultivated, crushed and tilled and P\ulcornerE transparent vinyl film had been mulched and tunneled to solar heating of soil from May 21. 1998 to July 28. 1998. The total yields of green manual crops which had been previousely cultivated were as followed order : pioneer 855F(64.3MT/ha), soybean(25.0MT/ha), red clover and orchardgrass. The average below-ground temperature at the depths of 5, 10 and 20cm were 54, 45 and 44$^{\circ}C$ during the mulching period, respectively The rate of infected area per potato tuber of common scab decreased by solar heating the soils with mulching after the soybean and red clover cultivation as with previous croppings. Plant height, SPAD(soil plant analysis development) reading, fresh weight of stems, and fall potato's tuber yields tended to increase by the cultivation of green manual crops and mulching of P\ulcornerE film. Fall potato's tuber yields were remarkably affected in the plot of soybean, red clover and pioneer 855F+cultivation of fall potato. T-N, K and Ca contents of fall potato(stem and tuber) also tended to increase by the cultivation of green manual crops and mulching of P\ulcornerE film. T-N, K and Ca contents of soil tended to increase after the cultivation of green manual crops and mulching of P\ulcornerE film and then reduced to contents of soil before green manual planting after potato harvesting.

  • PDF

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation (지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구)

  • Lee, Yonggyu;Baek, Namchoon;Yoon, Eungsang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

A Case Study on the Design Variables Evaluation of Green Roof System effecting on Building Energy Conservation (건물 에너지 소비량에 영향을 미치는 옥상녹화시스템 설계변수 평가에 관한 사례 연구)

  • Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • This study is to find out the major design variables of Green roof system effecting on the building energy consumption. Therefore, in three categories of green roof system, namely, foliage layer, soil layer and irrigation, 10 design variables are selected and simulated with one-story case building. Simulation is carried out with Design Builder and EnergyPlus. Finally, it was found out the effects of major variables affecting on the building heating and cooling energy and how they are affecting on the heating and cooling seasons respectively.