• Title/Summary/Keyword: solar heat system

Search Result 792, Processing Time 0.026 seconds

Forced Convection Heat Transfer from an Inner Surface of a Two-Dimensional Rectangular Cavity (이차원 사각형 공동 내부에서의 강제 대류 열전달)

  • Seo, T.B.;Han, K.Y.;Kange, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In order to investigate forced convection heat transfer due to the wind from the inner surface of a cavity receiver for a parabolic dish type solar energy collecting system, a two-dimensional rectangular cavity receiver is prepared and installed in a wind tunnel. The convection heat transfer coefficient of the inner surface of the receiver is dependent on the direction and the velocity of the wind. The attack angle of the cavity and the air velocity in the tunnel are controlled in a wide range so that the effects of the attack angle and the wind velocity on the heat transfer coefficient can be studied. The skirt is installed at the aperture of the cavity in order to reduce convective heat loss. The effects of the length and the installation angle of the skirt on convection heat transfer of the cavity are tested. It is found that convection heat loss can be significantly reduced by installing the skirt. Also, it is known that heat transfer from the cavity can be minimized if the angle of the skirt is $90^{\circ}$ to the outer surface of the cavity.

Analysis of Transient Heat Transfer Characteristics of a Receiver for a Dish Type Solar Thermal System by using CFD (CFD를 이용한 접시형 태양열 집열기의 Transient 열전달 성능 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.167-170
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Thermal Characteristics of Hybrid Solar Receiver using a Solar and Combustion heating (태양열과 가스 연소열을 적용한 복합 태양열 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.33-38
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy. Successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heating. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

Performance Prediction of a Hot Water Supply and Panel Heating System with Solar Energy (태양열 온수 및 난방 일체형 복합시스템의 성능예측)

  • Han, Yuri;Park, Youn Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a simulation program was developed with heat transfer model in the thermal storage tank for a solar collector and burner combined heating and hot water supply system. Analysis was conducted with variation of operating condition and schedule to analyze performance of a hot water supply and panel heating system with a solar collector and burner combined thermal storage tank. The simulation program is divided two sections. One part is calculation of temperature variation of water which flows through the panel in the floor for heating of the residential house during 24 hours, and the other part is heat transfer calculation for the reaction time to get desired water temperature in the thermal storage tank. As results, light oil consumption and system performance during operation period were analyzed with variation of climate condition and with or without solar collector. Most of the case, oil could be saved about from 24 to 41% with installing the solar collector. The performance of the system is more dependent on radiation time of the solar collector rather than the intensity of the solar radiation which was adopted for the climate analysis.

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

Heating Characteristics of Ondol using Heat Pump-Latent Heat Storage System (열펌프-잠열축열시스템을 이용한 온돌의 난방특성)

  • Kim, M.H.;Song, H.K.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • In these days the hot water circulating Ondol using the fossil fuel boiler is the heating system for the most of the Korean residents. Then it is installed without the heat storage medium in the Ondol heating layer, but the Korean traditional Ondol had been composed with the heat storage medium. The Ondol room without heat storage medium could not be comfortable because the room air temperature is not only changed unstably but also it has a defect too much fuel consumption. Therefore in this study the heat pump-latent heat storage Ondol as the new type of Ondol system was developed to solve these problems mentioned above, and the COP of the heat pump (Coefficient Of Performance), the latent heat storage characteristics in the new type of Ondol system and the temperature variation in the Ondol room with the ambient temperature were analyzed.

  • PDF

Performance of a Direct Contact Heat Exchanger with Meshes for a Solar Thermal Energy System

  • Kim, Chong-Bo;Kim, Nam-Jin;Seo, Tae-Beom;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-276
    • /
    • 2001
  • In order to improve the efficiency of a direct contact heat exchanger for a solar thermal energy system, the working fluid should be dispersed into small and uniform droplets, and stay within a heat exchanger for a long time. Therefore, installation of meshes in a direct contact heat exchanger is suggested in the present study, and the performance of the direct contact heat exchanger with several layers of meshes is experimentally investigated. Diethyl phthalate is used as the working fluid, and the performance of the heat exchanger is tested for several different operating conditions and compared to that of the heat exchanger without meshes. The results of this investigation show that meshes make droplets uniform and small when the flow rate is low. The relationship between the Peclet number and the Nusselt number becomes linear if it is steady. And, the Nusselt number for the direct contact heat exchanger with meshes becomes greater than that without meshes as the Peclet number increases.

  • PDF

Development of Flux Mapping Technique for the Solar Power Tower Plant (타워형 태양열발전을 위한 열유속 분포 측정기술 개발)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.274-279
    • /
    • 2012
  • Daegu Solar Power Tower Plant of 200 kW thermal capacity was developed for the first time in Korea, 2011. Measurement of the heat flux distribution is essential to evaluate the solar energy concentrated by reflectors and to design a suitable receiver. The flux mapping technique, which uses a radiometer and a diffuse plate, is common for measurement of the heat flux distribution. Because the solar power tower plant has a wide concentration area, the flux mapping technique using a fixed diffuse plate is difficult to apply. Therefore, the flux distribution in the solar power tower plant should be measured by the flux mapping technique using a small moving bar. In this study, we measured flux distributions with the moving-bar system developed at the KIER solar furnace and evaluated its applicability for the solar power tower plant.

  • PDF

Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load (직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토)

  • Kim, Soo-Kyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.