To improve the forecast capability of geomagnetic storms, we consider the real time solar and near Earth conditions together, since the characteristics of CMEs can be modified during their transit from the Sun to the Earth, and the geomagnetic storms may be directly affected by not only solar events but also near Earth interplanetary conditions. Using 55 CME-Dst pairs associated with M- and X-class solar flares, which have clearly identifiable source regions during 1997 to 2003, we confirm that the peak values of negative magnetic field Bz and duskward electric field Ey prior to Dst minimum are strongly related with Dst index. We suggest the solar wind criteria (Bz<-5 nT or Ey>3 mV/m for t>2 hr) for moderate storm less than -50 nT by modifying the criteria for intense storms less than -100 nT proposed by Gonzalez and Tsurutani (GT, 1987). As the results, 90% (28/31) of the storms are correctly forecasted by our criteria. For 15 exceptional events that are incorrectly forecasted by only CME parameters, 12 cases (80%) can be properly forecasted by solar wind criteria. When we applying CME and solar wind conditions together, all geomagnetic storms (Dst<-50 nT) are correctly forecasted. Our results show that, the storm forecast capability of the 2~3 days advanced warning based on CME parameters can be improved by combining with the urgent warning based on the near Earth solar wind condition.
We investigate the dependence of solar proton events (SPEs) on solar and interplanetary type II bursts associated with solar flares and/or CME-driven shocks. For this we consider NOAA solar proton events from 1997 to 2012 and their associated flare, CME, and type II radio burst data with the following subgroups: metric, decameter-hectometric (DH), and meter-to-kilometric (m-to-km) type II bursts. The primary findings of this study are as follows. First, about half (52%) of the m-to-km type II bursts are associated with SPEs and its occurrence rate is higher than those of DH type II bursts (45%) and metric type II bursts (19%). Second, the SPE occurrence rate strongly depends on flare strength and source longitude, especially for X-class flare associated ones; it is the highest in the central region for metric (46%), DH (54%), and m-to-km (75%) subgroups. Third, the SPE occurrence rate is also dependent on CME linear speed and angular width. The highest rates are found in the m-to-km subgroup associated with CME speed 1500 kms-1: partial halo CME (67%) and halo CME (55%). Fourth, in the relationships between SPE peak fluxes and solar eruption parameters (CME linear speed, flare flux, and longitude), SPE peak flux is mostly dependent on SPE peak flux for all three type II bursts (metric, DH, m-to-km). It is noted that the dependence of SPE peak flux on flare peak flux decreases from metric to m-to-km type II burst.
Japan Aerospace Exploration Agency (JAXA) has measured space environment and its effects on spacecraft and astronaut since 1987. At present, we have operated space environment monitors onboard one GEO spacecraft, one QZO spacecraft, and two LEO spacecrafts. The obtained space environment data has been gathered into the Space Environment and Effects System database (SEES, http://sees.tksc.jaxa.jp/). In this presentation, measurement result of space environment in low earth orbit obtained by the Daichi satellite from 2006 through 2011 is reported as well as recent activities in space environment engineerings in JAXA. The Technical Data Acquisition Equipment (TEDA) on board the Daichi satellite (Advanced Land Observing Satellite: ALOS) had been operated in low earth orbit at 700 km altitude with 98 degree inclination from February 2006 until April 2011. The TEDA consists of the Light Particle Telescope and the Heavy Ion Telescope. The operation period of the Daichi satellite was through the solar-activity minimum period. The space radiation environment around the Daichi satellite had been almost stable. However, large solar flares followed by CMEs sometimes disturbed the space radiation environment in the orbit of the Daichi satellite. In addition, high speed solar wind often flowed and modulated the electron flux in the horn region. On the other hand, a little variation was seen in the SAA region.
We have developed a set of daily solar flare peak flux forecast models using the multiple linear regression (MLR), the auto regression (AR), and artificial neural network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray flare peak flux, weighted total flux $T_F=1{\times}F_C+10{\times}F_M+100{\times}F_X$ of previous day, mean flare rates of a given McIntosh sunspot group (Zpc), and a Mount Wilson magnetic classification. We compute the hitting rate that is defined as the fraction of the events whose absolute differences between the observed and predicted flare fluxes in a logarithm scale are ${\leq}$ 0.5. The best three parameters related to the observed flare peak flux are as follows: weighted total flare flux of previous day (r=0.5), Mount Wilson magnetic classification (r=0.33), and McIntosh sunspot group (r=0.3). The hitting rates of flares stronger than the M5 class, which is regarded to be significant for space weather forecast, are as follows: 30% for the auto regression method and 69% for the neural network method.
The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.
Solar Proton Events (SPEs, ${\geq}\;10\;cm^{-1}s^{-1}sr^{-1}$ with >10 MeV) are very important for space weather forecasting. It is well known that they are associated with solar flares and/or CME-driven shocks. Especially, the CME-driven shocks have been observed as solar and interplanetary type II bursts. In this study, we estimated the occurrence probability of SPEs depending on three groups: (1) metric, (2) decameter-hectometric (D-H), and (3) meter-to-kilometric (m-to-km) type II bursts. For this work, we used SPEs and all available type II burst data in 1996-2004. The primary findings of this study are as follows. First, the majority (77%) of the m-to-km type II bursts are associated with SPEs and its probability is noticeably higher than D-H type II bursts probability strongly depend on longitude: eastern (0%), center(45%), and western (33%) for X-class associated metric type II bursts, eastern (15%), center (55%), and western (50%) for X-class associated D-H type II bursts, eastern (17%), center (77%), and western (64%) for X-class associated m-to-km type II bursts. Third, for m-to-km type II bursts, the SPE probability increases with CME speed: 400km/s${\leq}$V <1000km/s (36%), 1000km/s ${\leq}$V<1500km/s (40%), 1500km/s${\leq}$V (66%). Finally, we expect that these results will be used for setting up more reasonable solar proton event forecasting models.
In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC) map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.
It is crucial to predict the variabilities of the near-earth space environment associated with the solar activity, which cause enormous socio-economic impacts on mankind. The geomagnetic storm prediction scheme adopted in this study is designed to predict such variabilities in terms of the geomagnetic indices, AE and Dst, the cross-polar cap potential difference, the energy dissipation rate over the polar ionosphere and associated temperature increase in the thermosphere. The prediction code consists of two parts; prediction of the solar wind and interplanetary magnetic field based upon actual flare observations and estimation of various electrodynamic quantities mentioned above from the solar wind-magnetosphere coupling function 'epsilon' which is derivable through the predicted solar wind parameters. As a test run, the magnetic storm that occurred in early November, 1993, is simulated and the results are compared with the solar wind and the interplanetary magnetic field measured by the Japanese satellite, Geotail, and the geomagnetic indices obtained from ground magnetic observatories. Although numerous aspects of the code are to be further improved, the comparison between the simulated results and the actual measurements encourages us to use this prediction scheme as the first appoximation in forecasting the disturbances of the near-earth space environment associated with solar flares.
MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK;CHO EUN-AH
Journal of The Korean Astronomical Society
/
v.32
no.2
/
pp.127-136
/
1999
In this study we present the study of solar active regions based on BOAO vector magnetograms and H$\alpha$ filtergrams. With the new calibration method we analyzed BOAO vector magnetograms taken from the SOFT observational system to compare with those of other observing systems. In this study it has been demonstrated that (1) our longitudinal magnetogram matches very well the corresponding Mitaka's magnetogram to the extent that the maximum correlation yields r=0.962 between our re-scaled longitudinal magnetogram and the Mitaka's magnetogram; (2) according to a comparison of our magnetograms of AR 8422 with those taken at Mitaka solar observatory their longitudinal fields are very similar to each other while transverse fields are a little different possibly due to large noise level; (3) main features seen by our longitudinal magnetograms of AR 8422 and AR 8419 and the corresponding Kitt Peak magnetograms are very similar to each other; (4) time series of our vector magnetograms and H-alpha observations of AR 8419 during its flaring (M3.1/1B) activity show that the filament eruption followed the sheared inversion line of the quadrupolar configuration of sunspots, indicating that the flare should be associated with the quadrupolar field configuration and its interaction with new filament eruption. Finally, it may be concluded that the Solar Flare Telescope at BOAO works normally and it is ready to do numerous observational and theoretical works associated with solar activities such as flares.
The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.