• Title/Summary/Keyword: solar energy production

Search Result 440, Processing Time 0.021 seconds

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

Can cities become self-reliant in energy? A technological scenario analysis for Kampala, Uganda

  • Munu, Nicholas;Banadda, Noble
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.219-225
    • /
    • 2016
  • Energy self-reliance is important for economic growth and development for any nation. An energy self-reliance technological analysis for Kampala the capital city of Uganda is presented. Three renewable energy sources: Municipal Solid Waste (MSW), solar and wind are assessed for the period of 2014 to 2030. Annual MSW generation will increase from $6.2{\times}10^5$ tons in 2014 to $8.5{\times}10^5$ and $1.14{\times}10^6$ tons by 2030 at 2% and 3.9% population growth respectively. MSW energy recovery yield varies from 136.7 GWh (2014, 65% collection) to 387.9 GWh (2030, 100% collection). MSW can at best contribute 2.1% and 1.6% to total Kampala energy demands for 2014 and 2030 respectively. Wind contribution is 5.6% and 2.3% in those respective years. To meet Kampala energy demands through solar, 26.6% of Kampala area and 2.4 times her size is required for panel installation in 2014 and 2030 respectively. This study concludes that improving renewable energy production may not necessarily translate into energy self-reliant Kampala City based on current and predicted conditions on a business as usual energy utilization situation. More studies should be done to integrate improvement in renewable energy production with improvement in efficiency in energy utilization.

The Research of Ni/Cu/Ag Contact Solar Cells for Low Cost & High Efficiency in Crystalline Solar Cells (결정질 실리콘 태양전지의 저가 고 효율화를 위한 Ni/Cu/Ag 전극 태양전지)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.214-219
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cells, If high-efficiency solar cells are to be commercialized. It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper and Silver are applied widely in various electronic manufactures as easily formation is available by plating. The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposite the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 14.68 % on $0.2{\sim}0.6{\Omega}{\cdot}cm,\;20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Demonstration Research of Photovoltaic System with Solar Reflectors (반사판을 이용한 태양광발전시스템 실증연구)

  • Kim, Yong-Sik;Kang, Gi-Hwan;Sim, Sang-Yong;Lee, Hoo-Rock;Lee, Jin-Seob;Hong, Jin-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • This paper aims at enhancing the electric production efficiency of photovoltaic(PV) system. The electrical power of PV system is proportional to light intensity on a PV module surface. In this paper, we apply two types of systems to enhance power generation efficiency. First, of all, concentring sunlight using specular surface and one-axis tracking system which traces the sun with vertical direction are applied in this project. From this, we analyze the fixed type method and power generation efficiency.

A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination (발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구)

  • Park, Sung-Seek;Kim, Woo-Joong;Kim, Yong-Hwan;Jeon, Yong-Han;Hyun, Chang-Hae;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Power Quality of Wind/Diesel Hybrid Operation at an Micro Grid (마이크로 그리드에서의 풍력/디젤 복합발전 전력품질)

  • Kim, Seok-Woo;Ko, Seok-Whan;Jand, Moon-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.41-47
    • /
    • 2009
  • Wind/diesel hybrid operation can be one of the most effective option for electrical power production at a remote area such as Antarctica. The king Sejong station at Antarctica relies its power production on diesel engines and diesel oil is supplied every other year by ships. However, the oil transportation processes are liable to potential oil spillage caused by the floating ice around the King George island. The long-term storage of the oil at the station can also contaminate the surrounding soils. A l0kW wind turbine has been installed to save oil consumption and operated in connection with the diesel generators since 2006. The diesel engine that operated poorly during the first year of installation was replaced in 2008 to enhance power production an recent measurements indicate that both diesel power quality and the wind turbine availability have been dramatically improved by the replacement. This report discusses electrical power qualities of wind/diesel hybrid system operating at an isolated micro gird located in the king Sejong station. Our experience reveals that the similar technologies can be applied to domestic islands, for example, in the south sea.

Fabrication of a-Si:H/c-Si Hetero-Junction Solar Cells by Dual Hot Wire Chemical Vapor Deposition (양면동시증착 열선-CVD를 이용한 a-Si:H/c-Si 이종접합 태양전지 제조)

  • Jeong, Dae-Young;Song, Jun-Yong;Kim, Kyung-Min;Lee, Hi-Deok;Song, Jin-Soo;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.666-672
    • /
    • 2011
  • The a-Si:H/c-Si hetero-junction (HJ) solar cells have a variety of advantages in efficiency and fabrication processes. It has already demonstrated about 23% in R&D scale and more than 20% in commercial production. In order to further reduce the fabrication cost of HJ solar cells, fabrication processes should be simplified more than conventional methods which accompany separate processes of front and rear sides of the cells. In this study, we propose a simultaneous deposition of intrinsic thin a-Si:H layers on both sides of a wafer by dual hot wire CVD (HWVCD). In this system, wafers are located between tantalum wires, and a-Si:H layers are simultaneously deposited on both sides of the wafer. By using this scheme, we can reduce the process steps and time and improve the efficiency of HJ solar cells by removing surface contamination of the wafers. We achieved about 16% efficiency in HJ solar cells incorporating intrinsic a-Si:H buffers by dual HWCVD and p/n layers by PECVD.

Wind Resource Assessment for Green Island - Dokdo (녹색섬 풍력자원평가 - 독도)

  • Kim, Hyun-Goo;Kim, Keon-Hoon;Kang, Young-Heaok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.94-101
    • /
    • 2012
  • A Dokdo wind resource map has been drawn up for the Green Island Energy Master Plan according to Korea's national vision for 'Low Carbon Green Growth'. The micro-siting software WindSim v5.1,which is based on Computational Flow Analysis, is used with MERRA reanalysis data as synoptic climatology input data, and sensitivity analysis on turbulence model is accompanied. A wind resource assessment has been conducted for the Dokdo wind power dissemination plan, which consists of two 10kW wind turbines to be installed at the Dongdo dock and Dokdo guard building. It is evaluated that the capacity factors at Dongdo dock and Dokdo guard building are about 20% and 30% respectively, and annual and hourly variations of wind power generation have been analyzed, but summertime energy production is predicted to be only 40% of wintertime energy production.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.