• 제목/요약/키워드: solar corona

검색결과 86건 처리시간 0.034초

Development of the Camera System for Total Solar Eclipse

  • Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Bong, Su-Chan;Jang, Bi-Ho;Park, Sung-Joon;Yang, Heesu;Park, Young-Deuk;Cho, Kyungsuk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.84.3-85
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) has been developing the Camera System for the Total Solar Eclipse (TSE) observation. In 2016 we have assembled a simple camera system consisting of a commercial camera lens, a polarizer, bandpass filters, and a Canon camera to observe the solar corona during the Total Solar Eclipse in Indonesia. For 2017 TSE observation, we have studied and adapted the compact coronagraph design proposed by NASA. The compact coronagraph design dramatically reduces the volume and weight, and used for TSE observation. The camera is used to test and verify key components including function of bandpass filter, polarizer, and CCD during observing the Total Solar Eclipse. In this poster we focus on optical engineering works including designing, analyzing, testing, and building for the TSE observation.

  • PDF

FISS Observations of Shocks in the Solar Chromosphere

  • Chae, Jong-Chul;Park, Hyung-Min;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Cho, Kyung-Suk;Jang, Bi-Ho;Ahn, Kwang-Su;Cao, Wenda;Goode, Philip R.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • Shocks are thought to be important in the dynamics and heating of the solar chromosphere. The observational determination of shock parameters, however, has been hardly done because of the difficulty of observation at a high spatial, temporal and spectral resolution, and the lack of an effective method of inferring physical parameters from spectral data. Our inversion of the spectral data of the $H{\alpha}$ and Ca II 854.2 nm lines simultaneously taken from an intranetwork area, produced temporal profiles of temperature as well as line-of-sight velocities, from which we infer that three-minute chromospheric oscillations prevailing in the upper chromosphere are in fact trains of strong shocks with a strength of about two and a propagation speed of 20 km s-1 that carry a mechanical energy flux of 500 W m-2 upward. Our result supports the notion that shocks dominate the heating of the upper chromosphere, and probably the corona as well, at least in intranetwork regions of the quiet sun.

  • PDF

BITSE Preliminary Result and Future Plan

  • Bong, Su-Chan;Yang, Heesu;Lee, Jae-Ok;Kwon, Ryun Young;Cho, Kyung-Suk;Kim, Yeon-Han;Reginald, Nelson L.;Yashiro, Seiji;Gong, Qian;Gopalswamy, Natchumuthuk;Newmark, Jeffrey S.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.58.2-58.2
    • /
    • 2019
  • BITSE is a technology demonstration mission to remotely measure the speed, temperature, and density of the solar wind as it forms as close as 3 Rs. BITSE obtained coronal images during its one day flight above more than 99% of the atmosphere, and calibration data are taken in the laboratory as well as during the flight. As the linearly polarized K-corona is much fainter than other bright sources like diffraction, sky, and F-corona, a careful data reduction is required to obtain reliable scientific results. We will report status of the obtained data, the reduction progress, and future plan.

  • PDF

Development of DIagnostic Coronagraph Experiment (DICE) for Total Solar Eclipse

  • Choi, Seonghwan;Kim, Jihun;Park, Jongyeob;Jang, Biho;Bong, Suchan;Cho, Kyung-Suk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.66.3-66.3
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) is developing a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) which will be installed on the International Space Station (ISS). The coronagraph can measure speed and temperature by using four filters approximately 400 nm and polarization filter in three different angles, differently with older coronagraphs. For the successful mission, it has development and experiment progress in three phases; total solar eclipse experiment in 2017, balloon experiment in 2019, and the ISS installation in 2021. As a first experiment, we developed a coronagraph without an occulter named with Diagnostic Coronagraph Experiment (DICE) for experiment for filter system and imaging sensor. We designed optics with a field of view from 2.5 to 15 solar radii. It has four filters approximately 400 nm and polarizer to measure speed and velocity of the solar corona. For the selection of filter or polarization angle, it has two mechanism parts; filter wheel assembly and a polarizer wheel assembly. Especially we used Core Flight System (CFS) platform which was developed by NASA, when we develop the coronagraph operation software. It provides us stability, reusability, and compatibility.

  • PDF

CORONAL TEMPERATURE, DENSITY AND NONTHERMAL VELOCITY DERIVED FROM SERTS EUV SPECTRA

  • MOON YONG-JAE;YUN HONG-SIK;DAVILA J. M.;PARK YOUNG DEUK
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.207-215
    • /
    • 1996
  • To derive coronal temperature, electron density and nonthermal velocity, we have analyzed high resolution spectra (e.g., Fe XII 338.3, Fe XII 352.1, Fe XIV 334.2, Fe XIV 353.8, Fe XV 284.2, Fe XV 321.8, Fe XV 327.0, Fe XVI 335.4, and Fe XVI 360.8) taken from AR 6615 by SERTS (Solar Extreme Ultraviolet Rocket Telescope and Spectrograph). Important findings emerging from the present study are as follows: (1) Temperature estimated from Fe XVI 335.4 and Fe XIV, 334.2 is $\~2.4\times10^6 K$ and no systematic difference in temperature is found between the active region and its adjacent quiet region; (2) Mean electron density estimated from Fe XV is $\~3\times10^9 cm^{-3}\;and\;\~10^{10} cm^{-3}$ from Fe XII and Fe XIV; (3) Mean density of the active region is found to be higher than that of the quiet region by a factor of 2; (4) Nonthermal velocity estimated from Fe XV and Fe XVI is $20\times25 km\;s^{-l}$ which decreases with increasing ionization temperatures. This supports the notion that the nonthermal velocity declines outwards above the transition region.

  • PDF

AN ANALYSIS ON THE RARE SUBTYPES OF THE FAST SOLAR RADIO ACTIVITY

  • XIE R. X.;WANG M.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.331-332
    • /
    • 1996
  • We present 3 rare subtypes of the FFSs observed with high temporal resolution at 4-frequency (1.42, 2.13, 2.84 and 4.2G GHz). The various FFSs occurred during the main and post-flare phase can demonstrate that coronal nonthermal electron acceleration/injection may go through the whole development process of flares, and deduce that there may exist the re-forming of loop-like structures in the post-flare phase, and the complex multi-type magnetic structures in corona.

  • PDF

The Relation Between Magnetic Field Configuration And The Flux Expansion Factor

  • 이환희;;안준모;강지혜
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.85.1-85.1
    • /
    • 2012
  • In this study we use three-dimensional magnetohydrodynamic simulations of flux emergence from solar subsurface layer to corona. In order to study the twist parameter of magnetic field we compare the simulations for strongly twisted and weakly twisted cases. Based on the results, we derive a flux expansion factor of selected flux tubes which is a ratio of expanded cross section to the one measured at the footpoint of the flux tube. To understand the effect of flux expansion factor, we make a comparison between magnetic field configuration and the expansion factor. By using a fitting function of hyperbolic tangent we derive noticeable correlations among the strength of the vertical magnetic field, current density and expansion factor. We discuss what these results tell about the relationship between the twist of emerging field and the mechanism for the solar wind.

  • PDF

Comparison between Simulations and Observations Focused on Upflow Area in Active Region

  • 이환희;;안준모;강지혜
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.131.1-131.1
    • /
    • 2012
  • We use three-dimensional magnetohydrodynamic (MHD) simulations of flux emergence from solar subsurface to corona. In our previous work, we reported the relation between magnetic-field configuration and the flux expansion factor. Following these results, we investigate where an upflow is generated in an active region and how its location is related to the flux expansion factor. We also derive physical quantities of a real active region from observation data provided by Nobeyama Radioheliograph (NoRH), X-Ray Telescope (XRT), and Extreme Ultraviolet Imaging Spectrometer (EIS) onboard Hinode. These physical quantities are plasma density, temperature and flow. By comparing the simulation result and observational one, we will discuss the properties of the location producing a solar wind.

  • PDF