• 제목/요약/키워드: solar cells

검색결과 2,368건 처리시간 0.026초

반사방지 특성을 통일시킨 실리콘 질화막 간의 패시베이션 특성 비교 (Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical)

  • 김재은;이경동;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2016
  • Silicon nitride ($SiN_x:H$) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride ($SiN_x:H$) films made by PECVD. The passivation properties of $SiN_x:H$ are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane ($SiH_4$) and ammonia ($NH_3$) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.

디지털 프린팅 용액 공정 소재 개발 동향

  • 오석헌;손원일;박선진;김의덕;백충훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향 (Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films)

  • 최동일;윤세왕;김동환
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

실리콘 용탕으로부터 직접 제조된 태양광용 다결정 실리콘의 SiC 오염 연구 (SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications)

  • 이예능;장보윤;이진석;김준수;안영수;윤우영
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.69-74
    • /
    • 2013
  • Silicon (Si) wafer was grown by using direct growth from Si melt and contaminations of wafer during the process were investigated. In our process, BN was coated inside of all graphite parts including crucible in system to prevent carbon contamination. In addition, coated BN layer enhance the wettability, which ensures the favorable shape of grown wafer by proper flow of Si melt in casting mold. As a result, polycrystalline silicon wafer with dimension of $156{\times}156$ mm and thickness of $300{\pm}20$ um was successively obtained. There were, however, severe contaminations such as BN and SiC on surface of the as-grown wafer. While BN powders were easily removed by brushing surface, SiC could not be eliminated. As a result of BN analysis, C source for SiC was from binder contained in BN slurry. Therefore, to eliminate those C sources, additional flushing process was carried out before Si was melted. By adding 3-times flushing processes, SiC was not detected on the surface of as-grown Si wafer. Polycrystalline Si wafer directly grown from Si melt in this study can be applied for the cost-effective Si solar cells.

Reaction Path of Cu2ZnSnS4 Nanoparticles by a Solvothermal Method Using Copper Acetate, Zinc Acetate, Tin Chloride and Sulfur in Diethylenetriamine Solvent

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kown, HyukSang
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.109-114
    • /
    • 2013
  • $Cu_2ZnSnS_4$ (CZTS) nanoparticles were synthesized by a solvothermal method using copper (II) acetate, zinc acetate, tin chloride, and sulfur in diethylenetriamine solvent. Binary sulfide particles such as CuS, ZnS, SnS, and $SnS_2$ were obtained at $180^{\circ}C$; single-phase CZTS nanoparticles were obtained at $280^{\circ}C$. CZTS nanoparticles with spherical shape and grain size of 40 to 60 nm were obtained at $280^{\circ}C$. In the middle of 180 and $280^{\circ}C$, CZTS and ZnS phases were found. The time variation of reaction at $280^{\circ}C$ revealed that an amorphous state formed first instead of binary phases and then the amorphous phase was converted to crystalline CZTS state; it is different reaction path way from conventional solid-state reaction path of which binary phases react to form CZTS. CZTS films deposited and annealed from single-phase nanoparticles showed porous microstructure and poor adhesion. This indicates that a combination of CZTS and other flux phase is necessary to have a dense film for device fabrication.

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

롤투롤 인쇄전자공정에서 중첩정밀도 향상을 위한 정렬패턴과 위치 측정시스템 (Alignment Patterns and Position Measurement System for Precision Alignment of Roll-to-Roll Printing)

  • 서영원;임성진;오동호
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1563-1568
    • /
    • 2012
  • 인쇄전자는 RFID 나 유연 디스플레이 등의 전자회로나 소자를 인쇄방식으로 제작하는 공정이다. 특히 롤투롤과 같은 웹 이송방식 프린팅은 얇은 필름형태의 웹(Web)에 그라비아 인쇄나 고속 잉크젯과 같은 방법으로 이송중인 웹 상에 회로를 형성하는 공법이다. 이 공정은 생산단가가 저렴하고 고속생산이 가능하다는 이점이 있다. 다층구조를 가지는 회로나 디바이스를 생산할 때, 층과 층을 얼마나 정확하게 중첩시켜 인쇄하는가 하는 것은 인쇄된 전자회로의 집적도와 성능을 결정짓는 중요한 요소이다. 인쇄전자공법을 상용화하기 위해서 높은 중첩정밀도 구현이 선행되어야 한다. 본 연구에서는 롤투롤 인쇄방식에서 중첩정밀도의 향상을 위한 위치측정 시스템을 제안하고 신뢰성을 확인하였다. 또한 웹이 변형되었을 때의 측정 강인성도 실험적으로 확인하였다.

경기북부지역 정밀 수치기후도 제작 및 활용 - II. 콩 생육모형 결합에 의한 재배적지 탐색 (Development and Use of Digital Climate Models in Northern Gyunggi Province - II. Site-specific Performance Evaluation of Soybean Cultivars by DCM-based Growth Simulation)

  • 김성기;박중수;이영수;서희철;김광수;윤진일
    • 한국농림기상학회지
    • /
    • 제6권1호
    • /
    • pp.61-69
    • /
    • 2004
  • A long-term growth simulation was performed at 99 land units in Yeoncheon county to test the potential adaptability of each land unit for growing soybean cultivars. The land units for soybean cultivation(CZU), each represented by a geographically referenced land patch, were selected based on land use, soil characteristics, and minimum arable land area. Monthly climatic normals for daily maximum and minimum temperature, precipitation, number of rain days and solar radiation were extracted for each CZU from digital climate models(DCM). The DCM grid cells falling within a same CZU were aggregated to make spatially explicit climatic normals relevant to the CZU. A daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CROPGRO-soybean model suitable for 2 domestic soybean cultivars were derived from long-term field observations. Three foreign cultivars with well established parameters were also added to this study, representing maturity groups 3, 4, and 5. Each treatment was simulated with the randomly generated 30 years' daily weather data(from planting to physiological maturity) for 99 land units in Yeoncheon to simulate the growth and yield responses to the inter-annual climate variation. The same model was run with input data from the Crop Experiment Station in Suwon to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for evaluation. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific cultivar. A computer program(MAPSOY) was written to help utilize the results in a decision-making procedure for agrotechnology transfer. transfer.