• Title/Summary/Keyword: solanum tuberosum

Search Result 238, Processing Time 0.03 seconds

PCR-based markers developed by comparison of complete chloroplast genome sequences discriminate Solanum chacoense from other Solanum species

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.79-87
    • /
    • 2019
  • One of wild diploid Solanum species, Solanum chacoense, is one of the excellent resources for potato breeding because it is resistant to several important pathogens, but the species is not sexually compatible with potato (S. tuberosum) causing the limitation of sexual hybridization between S. tuberosum and S. chacoense. Therefore, diverse traits regarding resistance from the species can be introgressed into potato via somatic hybridization. After cell fusion, the identification of fusion products is crucial with molecular markers. In this study, S. chacoense specific markers were developed by comparing the chloroplast genome (cpDNA) sequence of S. chacoense obtained by NGS (next-generation sequencing) technology with those of five other Solanum species. A full length of the cpDNA sequence is 155,532 bp and its structure is similar to other Solanum species. Phylogenetic analysis resulted that S. chacoense is most closely located with S. commersonii. Sequence alignment with cpDNA sequences of six other Solanum species identified two InDels and 37 SNPs specific sequences in S. chacoense. Based on these InDels and SNPs regions, four markers for distingushing S. chacoense from other Solanum species were developed. These results obtained in this research could help breeders select breeding lines and facilitate breeding using S. chacoense in potato breeding.

Culture and Fusion of Protoplasts from Potato (Solanum tuberosum L.) and Tobacco (Nicotiana tabacum L.) (감자(Solanum tuberosum L.)와 담배 (Nicotiana tabacum L.)의 원형질체 배양 및 융합)

  • 정상호
    • Journal of Plant Biology
    • /
    • v.30 no.4
    • /
    • pp.287-298
    • /
    • 1987
  • The regenerative capacities of protoplasts isolated from potato (Solamum tuberosum L.) tubers and tobacco (Nicotiana tabacum L.) mesophyll tissues were examined, and then their intergeneric protoplast fusion was carried out. The potato tuber-derived protoplasts proliferated into the calli some of which showed rudimentary shoot-like structures, which had not been attempted before from tubers, while the tobacco protoplasts were regenerated into the whole plants. Intergeneric protoplast fusion between potato and tobacco was carried out and the heteroplasmic fusion products were formed. The first cell division of some of them was observed after 5 days of culture.

  • PDF

Isolation of Protoplasts from Cultured Cells of Potato (Solanum tubersoum L.) Tuber Tissue (감자(Solanum tuberosum L.) 괴경의 배양세포로부터 원형질체의 분리)

  • 정상호
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • Protopasts were isolated from cultured cells of potato (Solanum tuberosum L.) tuber tissue. The ability of callus formation from the culture cells was higher in cultivars Dejima and Superior than in Shimabara and Irish Cobbler on Lam's medium. Therefore, the former was used as sources for protoplast isolation. Friable calli were transferred to liquid media and cells in exponential phase were used for protoplast isolation. In both of Dejima and Superior, the yield of protoplasts was high in the enzyme solution of 2% Onozuka cellulase and 1% macerozyme. Also, viability of isolated protoplasts was very good. Thus, it seems that these protoplasts would be applicable to various aims of research.

  • PDF

Development of Solanum hougasii-specific markers using the complete chloroplast genome sequences of Solanum species (엽록체 전장유전체 정보를 이용한 Solanum hougasii 특이적 분자마커 개발)

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2020
  • Solanum hougasii, one of the wild Solanum species, has been widely used in potato breeding since it exhibits excellent resistance to diverse important pathogens. S. hougasii can be directly crossed with the cultivated tetraploid potato (S. tuberosum) owing to its EBN (Endosperm Balanced Number) value of 4, which is same as that of S. tuberosum although it is an allohexaploid. In this study, the complete chloroplast genome sequence of S. hougasii was obtained by next-generation sequencing technology, and compared with that of the chloroplast genome of seven other Solanum species to identify S. hougasii-specific PCR markers. The length of the complete chloroplast genome of S. hougasii was 155,549 bp. The structural organization of the chloroplast genome in S. hougasii was found to be similar to that of seven other Solanum species studied. Phylogenetic analysis of S. hougasii with ten other Solanaceae family members revealed that S. hougasii was most closely related to S. stoloniferum, followed by S. berthaultii, and S. tuberosum. Additional comparison of the chloroplast genome sequence with that of five other Solanum species revealed five InDels and 43 SNPs specific to S. hougasii. Based on these SNPs, four PCR-based markers were developed for the differentiation of S. hougasii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary and breeding aspects of Solanum species.

PCR-based markers for discriminating Solanum demissum were developed by comparison of complete chloroplast genome sequences of Solanum species (가지속 식물의 엽록체 전장유전체 비교를 통한 PCR 기반의 Solanum demissum 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • Solanum demissum is one of the wild Solanum species originating from Mexico. It has wildly been used for potato breeding due to its resistance to Phytophthora infestans. S. demissum has an EBN value of four, which is same as that of S. tuberosum, so that it is directly crossable for breeding purposes with the cultivated tetraploid potato (S. tuberosum). In this study, the chloroplast genome sequence of S. demissum obtained by next-generation sequencing technology was described and compared with those of seven other Solanum species to develop S. demissum-specific markers. Thetotal sequence length of the chloroplast genome is 155,558 bp, and its structural organization is similar to those of other Solanum species. Phylogenetic analysis with ten other Solanaceae species revealed that S. demissum is most closely grouped with S. hougasii and S. stoloniferum followed by S. berthaultii and S. tuberosum. Additional comparison of the chloroplast genome sequence with those of seven other Solanum species revealed two InDels specific to S. demissum. Based on these InDels, two PCR-based markers for discriminating S. demissum from other Solanum species were developed. The results obtained in this study will provide an opportunity to investigate more detailed evolutionary and breeding aspects in Solanum species.

Radio-protective Effects of the Extracts of Various Medicinal Plants against Human Normal Lung Cells

  • Lee, Ke-Yong;Kim, Chang-Han;Cho, Choa-Hyung
    • Natural Product Sciences
    • /
    • v.8 no.4
    • /
    • pp.144-146
    • /
    • 2002
  • Rhapontica uniflora, Platycodon grandiflorum and Solanum tuberosum extracts affected the recovery of radiation-induced damage at all tested doses $(15.6,\;31.3,\;62.5\;and\;125\;{\mu}g/ml)$. The survival rate of pretreatment with extracts was increased by 2 times more than its compared with untreated cells. All tested extracts protected the growh-delay of normal cells and haematological parameters from their radiation-induced fall. In tested extracts, Solanum tuberosum was significantly superior to Platycodon grandiflorum and Rhapontica uniflora in radio-protection activity.

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

Isolation and Characterization of a cDNA Encoding CycD3 Gene from Potato(Solanum tuberosum L.) (감자 (Solanum tuberosum L.) CycD3유전자의 분리 및 특성 분석)

  • Kang, In-Hong;Choi, Seung-Ho;Lee, Hong-Geun;Hwang, Hyun-Sik;Lee, Suk-Chan;Jung, Tae-Young;Lim, Hak-Tae;Bae, Shin-Chul
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2003
  • D-type cyclins are believed to regulate the G1 to S phase transition in response to nutrient and hormonal signals. We investigated the expression characteristics of the key cell-cycle regulators, mitotic and G1 cyclins in potato (Solanum tuberosum L.). We isolated D-type cyclin gene from potato and it was classified as D3 cyclin by sequence similarities and a phylogenetic analysis, and named as StcycD3;1. The accumulation of transcripts was predominantly associated with mitotically active organs, such as stolons, roots, flowers, leaves, and stems. Transcription of StcycD3;1 can be induced by sucrose.