• Title/Summary/Keyword: sol-Gel

Search Result 2,532, Processing Time 0.034 seconds

Influence of Electron Beam Irradiation on the Electrical and Optical Properties of InGaZnO Thin Film Transistor (InGaZnO 박막 트랜지스터의 전기 및 광학적 특성에 대한 전자빔 조사의 영향)

  • Cho, In-Hwan;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.345-349
    • /
    • 2017
  • The effects of electron beam(EB) irradiation on the electrical and optical properties of InGaZnO(IGZO) thin films fabricated using a sol-gel process were investigated. As the EB dose increased, the electrical characteristic of the IGZO TFTs changed from semiconductor to conductor, and the threshold voltage values shifted to the negative direction. X-ray photoelectron spectroscopy analysis of the O 1s core level showed that the relative area of oxygen vacancies increased from 14.68 to 19.08 % as the EB dose increased from 0 to $1.5{\times}10^{16}electrons/cm^2$. In addition, spectroscopic ellipsometer analysis showed that the optical band gap varied from 3.39 to 3.46 eV with increasing EB dose. From the result of band alignment, it was confirmed that the Fermi level($E_F$) of the sample irradiated with $1.5{\times}10^{16}electrons/cm^2$ was located at the closest position to the conduction band minimum(CBM) due to the increase of electron carrier concentration.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

A Novel Synthesis and Photonic Effect of Fe-CNT/TiO2 Composites by Controlling of Carbon Nanotube Amounts

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.117-124
    • /
    • 2010
  • Titanium dioxide ($TiO_2$) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/$TiO_2$ composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/$TiO_2$ composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/$TiO_2$ composites. In particular, the photocatalytic activity of the Fe-CNT/$TiO_2$ composites under visible light was better than that of the CNT/$TiO_2$ composites due to the introduction of Fe particles.

Effect of Triethylaluminum/Transition-Metal Ratio on the Physical Properties and Chemical Composition Distributions of Ethylene-Hexene Copolymers Produced by a $rac-Et(Ind)_2ZrCl_2/TiCl_4/MAO/SMB$ Catalyst

  • Park, Hai-Woong;La, Kyung-Won;Song, In-Kyu;Chung, Jin-Suk
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.221-224
    • /
    • 2007
  • A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for a metal-locene/Ziegler-Natta hybrid catalyst. The prepared $rac-Et(Ind)_2ZrCl_2/TiCl_4$/MAO(methylaluminoxane)/SMB catalyst was applied to the copolymerization of ethylene with l-hexene using a variable triethylaluminum (TEA)/transition-metal (Ti) ratio and fixed MAO/transition-metal (Zr) ratio. The effect of the Al(TEA)/Ti ratio on the physical properties and chemical composition distributions (CCDs) of the ethylene-hexene copolymers produced by the hybrid catalyst was investigated. In the ethylene-hexene copolymers, two melting temperatures attributed to the metal-locene and Ziegler-Natta catalysts were clearly observed. The number of CCD peaks was increased from six to seven and the temperature region in which the peaks for the short chain branches of the ethylene-hexene copolymer were distributed became lower as the Al(TEA)/Ti ratio was increased from 300 to 400. Furthermore, the temperature regions corresponding to the lamellas in the copolymer became lower and those corresponding to the small lamellas in the copolymer became higher as the Al(TEA)/Ti ratio was increased from 300 to 400. In the copolymer produced with Al(TEA)/Ti = 500, however, only four CCD peaks were observed and the short chain branches were poorly distributed.

Preparation and Characterization of Photochromic Organic-Inorganic Hybrid Coating Using 1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)3,3,4,4,5,5-hexafluoro-1-cyclopentene (1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene을 사용한 유-무기 혼성 광 변색 코팅 막의 제조 및 특성)

  • Lee, Chang-Ho;Lee, Sang-Goo;Lee, Jong-Dae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Organic-inorganic hybrid coating film using 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene (BTHFC) as a photochromic material was prepared under various reaction conditions such as the amounts of tetramethoxysilane (TMOS), various silane coupling agents, and solvent. It was found that color-fading speed and absorbance of the coating film was strongly dependent upon the polarity of silane coupling agent and solvent. In addition, the mole ratio of TMOS and methacryloyloxypropyltrimethoxysilane (MPTMS) was an important factor to determine color-fading speed and absorbance of the coating film. With increasing TMOS contents in coating film, the pencil hardness was increased. On the other hands, the transmittance of coating film was relatively decreased with the increase of TMOS.

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells

  • Kim, Kab In;Kim, Hee Su;Kim, Hyung Soon;Yun, Jeong Woo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.187-195
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.