• Title/Summary/Keyword: soilnail

Search Result 2, Processing Time 0.017 seconds

Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail (휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.331-338
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

Effect of the Height of the Slope on the Topology Optimization of Soilnail (비탈면의 높이가 쏘일네일 위상최적화에 미치는 영향)

  • Cho, Chungsik;Song, Youngsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2019
  • In this paper, we introduced phase optimization techniques in the Soil-Nail design to optimize the reinforcement required for each grade level. The optimal design results at the maximum slope height were further amplified to allow for phase optimization of the horizontal spacing of the Nail in accordance with the change in the height of the slope. The limit equilibrium analysis was performed by step-by-step sloping height, and the safety factor exceeded when the horizontal spacing of four days was fixed. The process of optimization was effectively carried out by densifying the required reinforcement depending on the slope elevation. Also limited to reflect the axial force of the nail into the reinforcement details.Using the method, the members' strength was reflected. When phase optimization technique is applied for each slope height by calculating the stiffening precision, it is judged that it will be more economical to optimize horizontal intervals by effectively reducing the repeated reinterpretation process that satisfies the reference safety ratio for each slope height.