• 제목/요약/키워드: soil-structure-interaction analysis

검색결과 452건 처리시간 0.025초

Building frame-pile foundation-soil interactive analysis

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • 제2권4호
    • /
    • pp.397-411
    • /
    • 2009
  • The effect of soil-structure interaction on a simple single storeyed and two bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the three dimensional finite element analysis with realistic assumptions. The members of the superstructure and substructure are descretized using 20 node isoparametric continuum elements while the interface between the soil and pile is modeled using 16 node isoparametric interface elements. Owing to viability in terms of computational resources and memory requirement, the approach of uncoupled analysis is generally preferred to coupled analysis of the system. However, an interactive analysis of the system is presented in this paper where the building frame and pile foundation are considered as a single compatible unit. This study is focused on the interaction between the pile cap and underlying soil. In the parametric study conducted using the coupled analysis, the effect of pile spacing in a pile group and configuration of the pile group is evaluated on the response of superstructure. The responses of the superstructure considered include the displacement at top of the frame and moments in the superstructure columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation used in the study. The percentage variation in the values of displacement obtained using the coupled and uncoupled analysis is found in the range of 4-17 and that for the moment in the range of 3-10. A reasonable agreement is observed in the results obtained using either approach.

Vibrations of wind-turbines considering soil-structure interaction

  • Adhikari, S.;Bhattacharya, S.
    • Wind and Structures
    • /
    • 제14권2호
    • /
    • pp.85-112
    • /
    • 2011
  • Wind turbine structures are long slender columns with a rotor and blade assembly placed on the top. These slender structures vibrate due to dynamic environmental forces and its own dynamics. Analysis of the dynamic behavior of wind turbines is fundamental to the stability, performance, operation and safety of these systems. In this paper a simplied approach is outlined for free vibration analysis of these long, slender structures taking the soil-structure interaction into account. The analytical method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with soil. A closed-form approximate expression has been derived for the first natural frequency of the system. This new expression is a function of geometric and elastic properties of wind turbine tower and properties of the foundation including soil. The proposed simple expression has been independently validated using an exact numerical method, laboratory based experimental measurement and field measurement of a real wind turbine structure. The results obtained in the paper shows that the proposed expression can be used for a quick assessment of the fundamental frequency of a wind turbine taking the soil-structure interaction into account.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용 (Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure)

  • 이혁주;임재성;문일환;김재민
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Nonlinear interaction behaviour of plane frame-layered soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.711-734
    • /
    • 2012
  • The foundation of a tall building frame resting on settable soil mass undergoes differential settlements which alter the forces in the structural members significantly. For tall buildings it is essential to consider seismic forces in analysis. The building frame, foundation and soil mass are considered to act as single integral compatible structural unit. The stress-strain characteristics of the supporting soil play a vital role in the interaction analysis. The resulting differential settlements of the soil mass are responsible for the redistribution of forces in the superstructure. In the present work, the nonlinear interaction analysis of a two-bay ten-storey plane building frame- layered soil system under seismic loading has been carried out using the coupled finite-infinite elements. The frame has been considered to act in linear elastic manner while the soil mass to act as nonlinear elastic manner. The subsoil in reality exists in layered formation and consists of various soil layers having different properties. Each individual soil layer in reality can be considered to behave in nonlinear manner. The nonlinear layered system as a whole will undergo differential settlements. Thus, it becomes essential to study the structural behaviour of a structure resting on such nonlinear composite layered soil system. The nonlinear constitutive hyperbolic soil model available in the literature is adopted to model the nonlinear behaviour of the soil mass. The structural behaviour of the interaction system is investigated as the shear forces and bending moments in superstructure get significantly altered due to differential settlements of the soil mass.

유체-구조물-지반 상호작용을 고려한 면진된 유체저장탱크의 3차원 지진응답 (Seismic Response of Base-Isolated Liquid Storage Tanks Considering Liquid-Structure-Soil Interaction)

  • 조성용;김문겸;임윤묵
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.98-105
    • /
    • 2002
  • The effects of the base-isolation system and elastic soil foundation on the behavior of a liquid storage tank are studied. To evaluate the seismic response of liquid storage tank accurately, the coupled dynamic system considering base isolation and soil interaction problem is formulated in time domain. Results show that the base isolation system reduces effectively the radial displacements, base shears, overturning moments, axial resultant stresses and the hydrodynamic pressure by providing flexibility and energy dissipation capability. Base Isolation may, however, increase the relative liquid sloshing amplitude due to the effect of liquid-structure interaction and cause excessive large relative displacements between structure and foundation. In addition to base-isolator, the dynamic behavior of liquid storage tank is related to the flexibility of base foundation, so the analysis of soil-structure interaction s achieved.

  • PDF

경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석 (Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil)

  • 남상혁;변근주;송하원;박성민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Review of static soil-framed structure interaction

  • Dalili S., Mohammad;Huat, B.B.K.;Jaafar, M.S.;Alkarni, A.
    • Interaction and multiscale mechanics
    • /
    • 제6권1호
    • /
    • pp.51-81
    • /
    • 2013
  • A wide literature review on Static Soil-Structure-Interaction (SSI) is done to highlight the key impacts of soil complexity on structural members of framed structures. Attention is paid to the developed approaches, i.e., conventional and Finite Element Method (FEM), to emphasize on deficiencies and merits of the proposed methods according to their applicability, accuracy and power to model and idealization of the superstructures as well as the soil continuum. Proposed hypothesis are much deeply discussed herein for better understanding which is normally neglected in literature review papers due to the large number of references and limit of space.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.