• Title/Summary/Keyword: soil-structure dynamic interaction

Search Result 259, Processing Time 0.027 seconds

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Application of Response Spectrum Method to a Bridge subjected to Multiple Support Excitation (다지점(多支點) 지진하중(地震荷重) 받는 교량(橋梁)에 대한 응답(應答) 스펙트럼법(法)의 적용(適用))

  • Kang, Kee Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 1990
  • The dynamic behaviour of a four-span continuous girder railway bridge subjected to multiple support excitations is investigated using the response spectrum method. Small-amplitude oscillations and linear-elastic material behaviour are assumed. Soil-structure interaction effects are disregarded and only the out-of-plane response of the bridge is considered. The results of the response spectrum analysis are compared with those from a time history analysis. Different combination rules for the superposition of modal maxima as well as supports are employed, such as square-root-of-sum-squares, double sum and p-norm methods.

  • PDF

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Dynamic Amplification Characteristics of Major Domestic Seismic Observation Sites using Ground Motions from Domestic Macro Earthquakes (국내 중규모지진의 자료를 이용한 주요 관측소 지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun Kyoung
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.399-408
    • /
    • 2012
  • To estimate seismic source and soil-structure interaction more reliably, site amplification characteristics should be considered. Among the various estimation methods, we used Nakamura's method (1989) to estimate site amplification. This method was originally applied to background noise; however, it has recently been successfully applied to S-wave and Coda-wave energy, and is applied to S-waves in the present study. We used more than 180 observed ground motions from 23 macro-earthquakes and then analyzed site amplification characteristics at eight seismic stations. Each station showed characteristics of site amplification properties in the low-, high- and resonance-frequency ranges. Comparison of the present results with those of other studies provide successful information regarding the dynamic amplification of domestic site characteristics and site classification.

A Study of the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites Using Coda Wave (Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Junkyoung;Lee, Jundae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.135-141
    • /
    • 2009
  • For more reliable estimation of soil-structure interaction and seismic source and attenuation properties, site amplification function should be considered. This study use the Nakamura's method (1989) for estimating site amplification though various methods for the same purpose have been proposed. This method was originally applied to the surface waves of background noise and therefore there are some limitation for applications to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to the coda wave energy which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which occurred recently, with magnitude range from 3.6 to 5.1 Each station showed characteristic site amplification property in low-, high- and resonance frequency ranges. In the case of comparing these results to those from S wave energy, lots of information to the site classification work can be gained. Moreover, removal of site amplification can give us more reliable seismic source parameters.

  • PDF

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

Case Study of Dynamic Amplification Characteristics of the Seismic Stations Using Observed Seismic Waves (관측지진파를 이용한 지반증폭특성 사례분석)

  • Lee, Jundae;Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • It is necessary to consider the site amplification for estimating SSI (soil structure interaction) and seismic source with more confidence. The horizontal to vertical (H/V) ratio technique in spectral domain is one of several techniques to estimate empirical site transfer function. The technique, originally proposed by Nakamura (1989), is applied to analyze the surface waves in the microtremor records. However, the application of this technique has been widened to the shear wave energy of strong motions for estimating site amplification. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that each station has the its own characteristics of the specific resonance, high-band, and low-band frequency. The characteristics of the resonance frequency is more important because the quality of the seismic records are dependent on the resonance frequency. The result can be used for the study of site classification and removal of the site amplification effects from observed records can give us more reliable seismic source parameters.

  • PDF

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.