• Title/Summary/Keyword: soil-reinforcement interaction

Search Result 39, Processing Time 0.018 seconds

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF

Soil-structure interaction analysis of beams resting on multilayered geosynthetic-reinforced soil

  • Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 2012
  • In this paper, soil-structure interaction analysis has been presented for beams resting on multilayered geosynthetic-reinforced granular fill-soft soil system. The soft soil and geosynthetic reinforcements are idealized as nonlinear springs and elastic membranes, respectively. The governing differential equations are solved by finite difference technique and the results are presented in non-dimensional form. It is observed from the study that use of geosynthetic reinforcement is not very effective for maximum settlement reduction in case of very rigid beam. Similarly the reinforcements are not effective for shear force reduction if the granular fill has very high shear modulus value. However, multilayered reinforced system is very effective for bending moment and differential settlement reduction.

Soil-Reinforcement Interaction to Restrain Differential Settlement of Buried Pipeline (지반-보강재 상호작용에 의한 매설관의 부등침하 억제효과)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.29-33
    • /
    • 1991
  • This paper reports the application study of the ground reinforement under a buried pipeline subjected to differential settlement via a finite element modelling. The Soil-reinforrement interaction helps to mimimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and apipeline. The analysis results are compared for both non-reinforied and reinforced cases to measure the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Numerical Modeling of Soil-Reinforcement Interaction Under a Buried Pipeline (매설관 하부지반-보강재 상호작용의 수치모델 연구)

  • 손준익;정하익
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-135
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a buried pipeline subjected to differential settlement via a finite element modeling. The soil-reinforcement interaction helps to minimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and a pipeline. The analysis results are compared for both non-reinforced and reinforced cases to numerically evaluate the stress transfer mechanism and the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Influence of Soil Nailing Angle on Slope Reinforcement Effect by Finite Difference Analysis (유한차분해석을 통한 쏘일네일링 설치각도가 사면 보강효과에 미치는 영향)

  • You, Kwang-Ho;Min, Kyoung-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.27-36
    • /
    • 2013
  • LEM (Limit Equilibrium Method) based programs are commonly used for the designs of soil nailing as a slope reinforcement. However, there is a drawback that the interaction between ground and soil nailing is not properly reflected in those programs, which needs to be solved. For economical constructions and designs, research is also required on the support pattern of soil nailing. In this study, therefore, reinforcement effects of soil nailing were compared and analyzed by performing finite difference analyses which could properly consider the interaction between ground and soil nailing. As a result, when the angle from slope to nail is $90^{\circ}$, failure slip surface becomes the largest and thus the factor of safety becomes maximum.

An Experimental Study on the Effect of Vegetation Roots on Slope Stability of Hillside Slopes (뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구)

  • Lee, In-Mo;Seong, Sang-Gyu;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-66
    • /
    • 1991
  • In the stability analysis of hillside slopes, the roots of vegetation have been considered to act as a soil reinforcement. In order to predict the amount of increase in soil shear resistance, produced by tensile strength of roots that intersect a potential slip surface in hillside slopes, new soil -root interaction models are proposed in this paper. For this purpose, firstly, laboratary teats and in-situ tests wert performed on soil-root systems, and experimental results were compared with a couple of soil-root interaction models which had been proposed by Gray, Waldron, and Wu etc. Based on this comparison, a new soil-root interaction model is proposed. Secondly, a probabilistic soil-root model is proposed based on statistical analysis considering random nature of root distribution, root characteristics, and soil-root interactions. Finally, to examine the effect of this root reinforcement system on stability of hillside slopes, a simple three-dimensional stability analysis was performed, and it was shown that root reinforcement had a significant stabilizing influence on shallow slips rather than deep slips in hillside slopes.

  • PDF

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • Khadije Mahmoodi;Nazanin Mahbubi Motlagh;Ahmad-Reza Mahboubi Ardakani
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.