• Title/Summary/Keyword: soil warming

Search Result 179, Processing Time 0.026 seconds

Comparison of Organic Carbon Composition in Profile by Using Solid 13C CPNMR Spectroscopy in Volcanic Ash Soil

  • Sonn, Yeon Kyu;Kang, Seong Soo;Ha, Sang Keun;Kim, Yoo Hak;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.391-398
    • /
    • 2013
  • Soil organic carbon (SOC) has the potential to promote the soil quality for sustainability and mitigation of global warming. There is little information on organic carbon composition despite of having resistance of carbon degradation in soil. In this study, to understand the effect of volcanic ash on organic carbon composition and quantity in soil, we investigated characteristics of volcanic soil and compared organic carbon composition of soil and humic extract by using $^{13}C$-CPMAS-NMR spectra under soil profiles of Namweon series in Jeju. SOC contents of inner soil profiles were 134.8, 101.3, and 27.4 g C $kg^{-1}$ at the layer of depth 10-20, 70-80 and 90-100 cm, respectively. These layers were significantly different to soil pH, oxalate Al contents, and soil moisture contents. Alkyl C/O-alkyl C ratio in soil was higher than that of humic extracts, which was decreased below soil depth. Aromaticity of soil and humic extract was ranged from 29-38 and 24-32%, which was highest at the humic extract of 70-80 cm in soil depth. These results indicate that the changes of SOC in volcanic ash soil resulted from alteration of organic composition by pyrolysis and stability of organic carbon by allophane in volcanic ash soil.

Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria

  • Falade, Oladele Fisayo;Rufai, Samsideen Olabiyi
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.116-127
    • /
    • 2021
  • Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The study was conducted to quantify carbon and base cations on soil mineral fractions in Natural Forest, Plantation Forest and Farm Land. Five 0.09 ha were demarcated alternately along 500 m long transect with an interval of 50 m in Natural Forest (NF), Plantation Forest (PF) and Farm Land (FL). Soil samples were collected with soil cores at 0-15, 15-30 and 30-45 cm depths in each plot. Soil core samples were oven-dried at 105℃ and soil bulk densities were computed. Sample (100 g) of each soil core was separated into >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.05 and <0.05 mm aggregates using dry sieve procedure and proportion determined. Carbon concentration of soil aggregates was determined using Loss-on-ignition method. Mineral fractions of soil depths were obtained using dispersion, sequential extraction and sedimentation methods of composite soil samples and sieved into <0.05 and >0.05 mm fractions. Cation exchange capacity of two mineral fractions was measured using spectrophotometry method. Data collected were analysed using descriptive and ANOVA at α0.05. Silt and sand particle size decreased while clay increased with increase in soil depth in NF and PF. Subsoil depth contained highest carbon stock in the PF. Carbon concentration increased with decrease in aggregate size in soil depths of NF and FL. Micro- (1-0.5, 0.5-0.05 and <0.05 mm) and macro-aggregates (>2.0 and 2-1.0 mm) were saturated with soil carbon in NF and FL, respectively. Cation exchange capacity of <0.05 mm was higher than >0.05 mm in soil depths of PF and FL. Fine silt (<0.05 mm) determine the cation exchange capacity in soil depths. Land use and mineral size influence the carbon and cation exchange capacity of Gambari Forest Reserve.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

THE CHANCES OF PERMAFROST INDUCED BY GREENHOUSE WARMING: A SIMULATION STUDY APPLYING MULTIPLE-LAYER GROUND MODEL

  • Yamaguchi, Kazuki;Noda, Akira;Kitoh, Akio
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • Many of past studies using physically based numerical climate models indicate that increases in atmospheric $CO_2$could enhance summer dryness over continental region in middle-high latitudes. However the models used in those studies do not take account of permafrost in high latitudes. We have carried out a set of experiments applying a version of global climate model that can reproduce realistic distribution of the permafrost. From the results, it is indicated that permafrost functions as a large reservoir in hydrologic cycle maintaining dry, hot summer over continents in northern middle-high latitudes, and that the $CO_2$warming would reduce this function by causing climatological thawing of permafrost, which would result in moister and cooler summer, and warmer winter in the same region. The present study indicates that an inclusion of very simple description of soil freezing process can make a large difference in a model simulation.

  • PDF

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Mawlod, Arass Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

Soil properties and molecular compositions of soil organic matter in four different Arctic regions

  • Sujeong, Jeong;Sungjin, Nam;Ji Young, Jung
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.282-291
    • /
    • 2022
  • Background: The Arctic permafrost stores enormous amount of carbon (C), about one third of global C stocks. However, drastically increasing temperature in the Arctic makes the stable frozen C stock vulnerable to microbial decomposition. The released carbon dioxide from permafrost can cause accelerating C feedback to the atmosphere. Soil organic matter (SOM) composition would be the basic information to project the trajectory of C under rapidly changing climate. However, not many studies on SOM characterization have been done compared to quantification of SOM stocks. Thus, the purpose of our study is to determine soil properties and molecular compositions of SOM in four different Arctic regions. We collected soils in different soil layers from 1) Cambridge Bay, Canada, 2) Council, Alaska, USA, 3) Svalbard, Norway, and 4) Zackenberg, Greenland. The basic soil properties were measured, and the molecular composition of SOM was analyzed through pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). Results: The Oi layer of soil in Council, Alaska showed the lowest soil pH and the highest electrical conductivity (EC) and SOM content. All soils in each site showed increasing pH and decreasing SOC and EC values with soil depth. Since the Council site was moist acidic tundra compared to other three dry tundra sites, soil properties were distinct from the others: high SOM and EC, and low pH. Through the py-GC/MS analysis, a total of 117 pyrolysis products were detected from 32 soil samples of four different Arctic soils. The first two-axis of the PCA explained 38% of sample variation. While short- and mid-hydrocarbons were associated with mineral layers, lignins and polysaccharides were linked to organic layers of Alaska and Cambridge Bay soil. Conclusions: We conclude that the py-GC/MS results separated soil samples mainly based on the origin of SOM (plants- or microbially-derived). This molecular characteristics of SOM can play a role of controlling SOM degradation to warming. Thus, it should be further investigated how the SOM molecular characteristics have impacts on SOM dynamics through additional laboratory incubation studies and microbial decomposition measurements in the field.

Impact of Climate Change on the Ocean Environment in the Viewpoint of Paleoclimatology (기후변화가 해양에 미친 영향: 고기후학의 관점에서)

  • Yi, Hi-Il;Shin, Im Chul
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2010
  • Impact of global warming on the ocean environment is reviewed based on most recently published publications. The most significant impact of global warming on marine environment is due to the melting of mountain and continental glaciers. Ice melting causes slow down and/or shut down of thermohaline circulation, and makes hypoxic environment for the first time, then makes anoxic with time. This can cause decreasing biodiversity, and finally makes global extinction of animals and plants. Furthermore, global warming causes sea-level rise, soil erosion and changes in calcium carbonate compensation depth (CCD). These changes also can make marine ecosystem unstable. If we emit carbon dioxide at a current rate, the global mean temperature will rise at least $6^{\circ}C$ at the end of this century, as predicted by IPCC (Intergovernmental Panel on Climate Change). In this case, the ocean waters become acidic and anoxic, and the thermohaline circulation will be halted, and marine ecosystems collapsed.

Characterization of Tree Composition using Images from SENTINEL-2: A Case Study with Semiyang Oreum (SENTINEL-2 위성영상을 이용한 조림 특성 조사: 세미양오름를 통한 사례 연구)

  • Chung, Yong Suk;Yoon, Seong Uk;Heo, Seong;Kim, Yoon Seok;Ahn, Jinhyun;Han, Gyung Deok
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.735-741
    • /
    • 2022
  • Global warming affects forests and their ecology. Diversity in the forest is a buffer that reduces the damage due to global warming. Mixed forests are ecologically more valuable as versatile habitats and are effective in preventing landslides. In Korea, most forests were created by simple afforestation with trees of evergreen species. Typically, evergreen trees are shallow-rooted, and deciduous trees are deep-rooted. Mixed forest tree roots grip the soil effectively, which reduces the occurrence of landslides. Therefore, improving the distribution of tree types is essential to reduce damage due to global warming. For this improvement, the investigation of tree types of the forest is needed. However, determining the tree type distribution of forests that are spread over wide areas is labor-intensive and time-consuming. This study suggests effective methods for determining the distribution of tree types in a forest that is spread across a relatively wide area. Using normalized difference vegetation index and RGB images from unmanned aerial vehicles, each evergreen and deciduous tree, and grassland area can be distinguished. The distinguished image determines the distribution of tree type. This method is effective compared to directly determining the tree type distribution in the forest by the use of manpower. The data from these methods could be applied to plan a mixed forest or to prepare for future damage due to global warming.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.