• 제목/요약/키워드: soil variables

검색결과 531건 처리시간 0.031초

Effect of Soil Factors on Vegetation Values of Salt Marsh Plant Communities: Multiple Regression Model

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • 제29권4호
    • /
    • pp.361-364
    • /
    • 2006
  • The objective of the current study was to characterize and apply multiple regression model relating to vegetation values of the plant species over salt marshes. For each salt marsh community, vegetation and soil variables were investigated in the western coast and the southern coast in South Korea. Osmotic potential of soil and $Cl^-$ content of soil as independent variable had positive and negative influences on vegetation values. Multiple regression model showed that vegetation values of 14 coastal plant communities were determined by pH of soil, osmotic potential of soil and sand content. The multiple regression equation may be applied to the explanation of distribution and abundance of plant communities with exiting ordination plots.

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제30권3호
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.

Factors influencing the spatial distribution of soil organic carbon storage in South Korea

  • May Thi Tuyet Do;Min Ho Yeon;Young Hun Kim;Gi Ha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.167-167
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical component of soil health and is crucial in mitigating climate change by sequestering carbon from the atmosphere. Accurate estimation of SOC storage is essential for understanding SOC dynamics and developing effective soil management strategies. This study aimed to investigate the factors influencing the spatial distribution of SOC storage in South Korea, using bulk density (BD) prediction to estimate SOC stock. The study utilized data from 393 soil series collected from various land uses across South Korea established by Korea Rural Development Administration from 1968-1999. The samples were analyzed for soil properties such as soil texture, pH, and BD, and SOC stock was estimated using a predictive model based on BD. The average SOC stock in South Korea at 30 cm topsoil was 49.1 Mg/ha. The study results revealed that soil texture and land use were the most significant factors influencing the spatial distribution of SOC storage in South Korea. Forested areas had significantly higher SOC storage than other land use types. Climate variables such as temperature and precipitation had a relative influence on SOC storage. The findings of this study provide valuable insights into the factors influencing the spatial distribution of SOC storage in South Korea.

  • PDF

불포화 화강풍화토의 함수특성 (Soil-water characteristics of Unsaturated Decomposed Granite Soils)

  • 신방웅;이봉직;이종규;강종범
    • 한국지반환경공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.49-58
    • /
    • 2003
  • 본 연구에서는 불포화토 지반에 있어 모관흡수력이 지반의 거동특성에 중요한 설계변수이므로, 충청도권의 화강풍화토 지반을 대상으로 함수특성곡선을 제시하고, 입도분포곡선과 함수특성곡선과의 관계를 통하여 함수특성곡선의 추정가능성을 제시하고자 한다. 충청권의 화강풍화토 12군데의 시료를 채취하여 입도별로 분류하고, 불포화토의 경험식에 있어서 a, n, m 계수값이 함수특성을 좌우하는 주요한 변수임을 감안하여 입도분포곡선의 시작점, 기울기 및 세립분의 양에 따라 시료를 재성형하였다. 함수특성시험결과 함수비와 흡수력의 변화는 입도분포곡선의 좌우 위치와 기울기, 세립분의 양에 대한 영향이 큰 것으로 나타나 세립분의 함유량과 입도분포에 따른 상관성을 보여주었고, 매개변수 a, n, m은 불포화 화강풍화토의 설계변수로서 기초자료가 될 것이다.

  • PDF

쏘일네일링의 세 가지 파괴모드를 고려한 설계 최적화에 대한 연구 (Optimization of Soil-Nailing Designs Considering Three Failure Modes)

  • 서형준;이강현;박정준;이인모
    • 한국지반공학회논문집
    • /
    • 제28권7호
    • /
    • pp.5-16
    • /
    • 2012
  • 쏘일네일링 공법은 흙막이 또는 사면안정을 위해서 가장 많이 사용되는 공법이다. 일반적으로 쏘일네일링 공법의 설계에서는 인발에 의한 파괴와 전단에 의한 파괴를 고려한다. 쏘일네일링의 파괴거동은 인발파괴와 전단파괴와 같이 파괴면을 가지면서 사면이 무너지는 경우도 발생하지만 굴착에 의해서 사면 표면의 수평응력이 감소함에 따라 점점 표면이 쓸려가는 얕은 파괴에 의해서 파괴에 이르는 경우가 실제 현장에서 자주 발생하게 된다. 따라서 쏘일네일링의 파괴거동을 크게 인발파괴, 전단파괴, 그리고 얕은파괴로 나누어 정의하였다. 본 논문에서는 각각의 파괴모드에 대한 제약조건을 이론적으로 산정하였다. 또한 각각의 파괴를 막기 위한 설계 최적화를 실시하였으며, 네일링의 정착길이, 개수, 그리고 얕은파괴를 막기 위한 전면에서의 최소 구속압을 설계변수로 두어 최적화 과정을 진행하였다. 최적화 과정은 먼저 네일링의 정착길이와 인장력을 설계변수로 하여 인발파괴 및 전단파괴에 대하여 최적화를 실시한다. 다음으로 각 굴착단계별 사면의 표면에서 얕은파괴를 막기 위한 최소의 구속압을 산정한 후 최적화를 반복수행하여 각각의 설계 변수를 산정하게 된다. 이와 같은 설계 최적화 프로그램을 통해서 인발파괴와 전단파괴만을 고려하는 기존의 설계 시스템에서 프리스트레스까지 산정할 수 있게 되었다.

고형오염의 재침착에 영향을 미치는 제인자 (Some Factors Affecting on the Redeposition of Particulate Soil)

  • 배현숙;김성련
    • 한국의류학회지
    • /
    • 제6권2호
    • /
    • pp.33-40
    • /
    • 1982
  • The removal and redeposition of particulate soil occur simultaneously during the washing process. In order to investigate variables which affect on the redeposition of particulate soil, cotton lawn was soiled in the ion oxide black suspension using Launder-O meter. The amount of deposited soil was estimated by means of the spectrometric analysis of iron on the fabric after soiled. The results are as follows: 1. The presence of surfactants b suspension decreased the deposition of particulate soil and the most effective surfactant was soap and the descending order was NaDBS>CTAB>PONPE. 2. The influnce of temperature on soil deposition was considerable, soil deposition was gradually increased with elevating temperature in ionic surfactants solution such as NaDBS and CTAB but that was decreased above $40^{\circ}C$ in nonionic surfactant solution. 3. The tendency of soil deposition was dwindled by adding electrolytes especially in case of polyvalent anions. 4. From the results of the experiments redeposition of particulate soil was related with suspending power of surfactants and was influenced by factors varing zeta potential.

  • PDF

시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발 (Development of an Automatic Water Control System for Greenhouse Soil Water Content Management)

  • 이동훈;이규승;장영창
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

Assessment of Soil Compaction Related to the Bulk Density with Land use Types on Arable Land

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa;Roh, Ahn-Sung;Cho, Kwang-Rae;Lim, Soo-Jeong;Choi, Seung-Chul;Lee, Jin-Il;Yun, Yeo-Uk;Ahn, Byoung-Gu;Kim, Byeong-Ho;Park, Jun-Hong;Kim, Chan-Yong;Park, Sang-Jo
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.333-342
    • /
    • 2013
  • Soil compaction is affected by soil texture, organic matter (OM), strength (ST) and soil moisture, which is difficult to understand the degree and effects of related factors. The purpose of the study is to assess the impact of them on the compaction with bulk density (BD). The analysis was conducted with data collected from national-wide monitoring sites including 105 upland soils, 246 orchard soils, and 408 paddy soils between 2009 and 2012. The distributions of soil physical properties were measured. The correlation and multi linear regression analysis were performed between soil physical properties using SAS. The regression equation of BD(y) includes ST, gravitational water contents (GWC), and OM as variables commonly, having additional factors, clay content and sand content in paddy soil and upland soil for only subsoil (p<0.001). Our results show that the BD could be explained about 40~50% by various physical properties. The regression was mainly determined by ST in orchard and upland soil and by the GWC in paddy soil. To mitigate soil compaction, it is important to maintain the proper level of OM in upland soil and to consider the moisture condition with soil texture in paddy soil when making work plan. Furthermore, it would be recommended the management criteria classified by soil texture for the paddy soils.