• 제목/요약/키워드: soil variables

검색결과 526건 처리시간 0.03초

토양의 정량적 및 정성적 특성을 이용한 연초 경작지의 비옥도 평가 (Fertility Evaluation of Tobacco Field by Quantitative and Qualitative Characteristics of Soils)

  • 홍순달;김기인;이윤환;정훈채;김용연
    • 한국연초학회지
    • /
    • 제22권2호
    • /
    • pp.123-132
    • /
    • 2000
  • Evaluation method of soil fertility by combination of soil color characteristics and survey data from soil map as well as chemical properties was investigated on total 35 field and pot experiments. Total 35 tobacco fields including 11 fields located at Cheonweon county in Chungnam Province, 9 fields located at Goesan county in Chungbuk Province, and 15 fields located at Youngcheon county in Kyongbuk Province were selected in 1984 to cover the wide range of distribution in landscape and soil attributes. Yields of tobacco grown on the plots of both the pot and field experiment which were not applied with any fertilizer were considered as basic fertility of the soil (BFS). The BFS was estimated by 32 independent variables including 15 chemical properties, 3 color characteristics, and 14 soil survey data from soil map. Twenty-four independent variables containing 16 quantitative variables selected from 24 quantitative variables by collinearity diagnostics and 8 qualitative variables, were classified and analyzed by multiple linear regression (MLR) of REG and GLM models of SAS. Tobacco yield of field experiment showed high variations by eight times in difference between minimum and maximum yield indicating the diverse soil fertility among the experimental fields. Evaluation for the BFS by the MLR including quantitative variables was still more confidential than that by a single index and that showed more improvement of coefficient of determination ($R^2$) in pot experiment than in field experiment. Evaluation for the BFS by MLR in field experiment was still improved by adding qualitative variables as well as quantitative variables. The variability in the BFS of field experiment was explained 43.2% by quantitative variables and 67.95% by adding both the quantitative and qualitative variables compared with 21.7% by simple regression with NO$_3$-N content in soil. The regression evaluation for the best evaluation of the BFS of field experiment by MLR included NO$_3$-N content, L value, and a value of soil color as quantitative variables and available soil depth and topography as qualitative variables. Consequently, it is assumed that this approach by the MLR including both the quantitative and qualitative variables was available as an evaluation model of soil fertility for tobacco field.

  • PDF

Distributional Pattern of Tree Species in Response to Soil Variables in a Semi Natural Tropical Forest of Bangladesh

  • Ara, Saida Hossain;Limon, Mahedi Hasan;Kibria, Mohammad Golam
    • Journal of Forest and Environmental Science
    • /
    • 제37권1호
    • /
    • pp.14-24
    • /
    • 2021
  • A plant community is a group of populations that coexist in space and interact directly or indirectly with the environment. In this paper, we determined the pattern of tree species composition in response to soil variables in Khadimnagar National Park (KNP), which is one of the least studied tropical forests in Bangladesh. Soil and vegetation data were collected from 71 sample plots. Canonical Correspondence Analysis (CCA) with associated Monte Carlo permutation tests (499 permutations) was carried out to determine the most significant soil variable and to explore the relationship between tree species distribution and soil variables. Soil pH and clay content (pH with p<0.01 and Clay content with p<0.05) were the most significant variables that influence the overall tree species distribution in KNP. Soil pH is related to the distribution and abundance of Syzygium grande and Magnolia champaca, which were mostly found and dominant species in KNP. Some species were correlated with clay content such as Artocarpus chaplasha and Cassia siamea. These observations suggest that both the physico-chemical properties of soil play a major role in shaping the tree distribution in KNP. Hence, these soil properties should take into account for any tree conservation strategy in this forest.

A simplified directly determination of soil-water retention curve variables

  • Niu, Geng;Shao, Longtan;Guo, Xiaoxia
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.431-439
    • /
    • 2020
  • Soil-water retention curve (SWRC) contains key information for the application of unsaturated soil mechanics principles to engineering practice. The SWRC variables are commonly used to describe the hydro-mechanics of soils. Generally, these parameters are determined using the graphical method which can be time consuming. The SWRC is highly dependent on the pore size distribution (PSD). Theoretically, the PSD obtained by mercury intrusion porosimetry test can be used to determine some SWRC variables. Moreover, the relationship between SWRC and shrinkage curve has been investigated. A new method to determine total SWRC variables directly without curve-fitting procedure is proposed. Substituting the variables into linear SWRC equations construct SWRC. A good agreement was obtained between predicted and measured SWRCs, indicating the validity of the proposed method for unimodal SWRC.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

Causality between climatic and soil factors on Italian ryegrass yield in paddy field via climate and soil big data

  • Kim, Moonju;Peng, Jing-Lun;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제61권6호
    • /
    • pp.324-332
    • /
    • 2019
  • This study aimed to identify the causality between climatic and soil variables affecting the yield of Italian ryegrass (Lolium multiflorum Lam., IRG) in the paddy field by constructing the pathways via structure equation model. The IRG data (n = 133) was collected from the National Agricultural Cooperative Federation (1992-2013). The climatic variables were accumulated temperature, growing days and precipitation amount from the weather information system of Korea Meteorological Administration, and soil variables were effective soil depth, slope, gravel content and drainage class as soil physical properties from the soil information system of Rural Development Administration. In general, IRG cultivation by the rice-rotation system in paddy field is important and unique in East Asia because it contributes to the increase of income by cultivating IRG during agricultural off-season. As a result, the seasonal effects of accumulated temperature and growing days of autumn and next spring were evident, furthermore, autumnal temperature and spring precipitation indirectly influenced yield through spring temperature. The effect of autumnal temperature, spring temperature, spring precipitation and soil physics factors were 0.62, 0.36, 0.23, and 0.16 in order (p < 0.05). Even though the relationship between soil physical and precipitation was not significant, it does not mean there was no association. Because the soil physical variables were categorical, their effects were weakly reflected even with scale adjustment by jitter transformation. We expected that this study could contribute to increasing IRG yield by presenting the causality of climatic and soil factors and could be extended to various factors.

6절 링크를 이용한 진동굴취기의 설계요인 (Design Parameters of A Six-bar Linkage Vibrating Digger)

  • 문학수;강화석
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 2003
  • An oscillating digger mechanism was designed, constructed. and tested. The mechanism is consisted of a six-bar linkage, one four-bar linkage was fer the digger blade and the other one fur variable soil-crop separation. Experimental variables were amplitude(3, 6, 9 mm). frequency(11.2, 14.9. 17.0 Hz), and forward speed of tractor(0.91, 1.13, 1.56 km/h). Each combination of these variables was replicated three times to measure the draft and torque for power requirement evaluation. and the broken-up soil height on the soil separation sieve mechanism. Four parameters λ(the ratio of vibration speed to forward velocity), p(the ratio of vibration acceleration to forward velocity), K(the ratio of vibration acceleration to gravitational acceleration), and T(the product of λ and K) were induced from three experimental variables: amplitude, frequency, and tractor speed. And the power requirement and soil separation ability were analyzed by regression. Though λ and K were known to be the representative parameters. T was the most moderate one to explain draft. torque. and soil separation in this study. It was estimated that the T equal to or greater than 2.4 was the minimum recommended value. Figure 18 would be useful fir the selection of amplitude. frequency, or operating tractor speed once any two variables are known.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

한국 주요 토양유형의 공간적 분포와 토양형성요인을 이용한 예측가능성 평가 (Spatial Distribution of Major Soil Types in Korea and an Assessment of Soil Predictability Using Soil Forming Factors)

  • 박수진;손연규;홍석영;박찬원;장용선
    • 대한지리학회지
    • /
    • 제45권1호
    • /
    • pp.95-118
    • /
    • 2010
  • 이 연구에서는 현재 한국에서 사용되고 있는 구분류법에 근거한 대토양군과 신분류법에 근거한 대군의 공간적 분포를 살펴보고, 토양형성과 관련된 각종 환경요인들과의 상관관계를 분석하였다. 그 결과를 토대로 의사결정나무기법을 이용하여 토양분포의 예측가능성을 평가하였다. 대토양군의 경우에는 분포를 보다 직관적으로 이해할 수 있는 장점이 있지만, 환경요인을 이용한 예측가능성면에서는 대군에 뒤지는 결과를 보여주었다. 토양분포를 결정하는 요인들로는 산지와 평탄지가 뚜렷하게 구분되는 한국의 지형특성이 가장 중요한 요인으로 나타났으며 부차적으로 기후특성, 그리고 사변을 따라 나타나는 토양연속성이 제시되었다. 의사결정나무기법을 이용한 토양의 예측가능성 평가에서는 예측변수의 수와 종류에 따라 35%에서 75%의 분류정확도를 보여주었다. 신분류법의 경우에는 지형요인이 가장 중요한 예측변수로 평가된 반면, 구분류법의 경우에는 기후변수가 중요한 예측변수로 평가되어 대조를 보였다.

토양의 물리화학적 성질에 의한 소나무림 임지생산력 추정 (Estimation of Site Productivity of Pinus densiflora by the Soil Physico-chemical Properties)

  • 박남창;이광수;정수영
    • 한국토양비료학회지
    • /
    • 제42권3호
    • /
    • pp.160-166
    • /
    • 2009
  • We estimated site productivity for unstocked land based on the relationship between site index (i.e., average height of dominant trees at fixed age) and soil physico-chemical properties of Pinus densiflora stands. Site index relates to a direct method of determining a tree's response to a specific environment such as forest soil and climate conditions. We selected 78 sites in 22 P. densiflora stands of central temperate forest zone, and sampled soils for physicochemical analyzing. And 13 properties of soils were statistically treated by stepwise regression. In the degree of contribution of the variables to site index, the highly effective variables in A horizon were OM, clay content, sand content, available $P_2O_5$, and Exch. $Ca^{{+}{+}}$ inorder, and in B horizon T.N., O.M., Soil pH, cation exchange capacity(C.E.C.), and sand content in order. In both A and B horizon of the soil for P. densiflora stands, the variables commonly contributed to the site index were sand content and OM. These results may be useful to provide not only important criteria for establishment of Pinus densiflora stand sespecially in unstocked land but also aguidance for reforestation.

지리정보시스템을 활용한 연초재배 토양의 비옥도 평가 (Soil Fertility Evaluation by Application of Geographic Information System for Tobacco Fields)

  • 석영선;홍순달;안정호
    • 한국연초학회지
    • /
    • 제21권1호
    • /
    • pp.36-48
    • /
    • 1999
  • Field test was conducted in Chungbuk province to evaluate the soil fertility using landscape and soil attributes by application of geographic information system(GIS) in 48 tobacco fields during 2 years(1996 ; 23 fields, 1997 ; 25 fields). The soil fertility factors and fertilizer effects were estimated by twenty five independent variables including 13 chemical properties and 12 GIS databases. Twenty five independent variables were classified by two groups, 15 quantitative indexes and 10 qualitative indexes and were analyzed by multiple linear regression (MLR) of SAS, REG and GLM models. The estimation model for evaluation of soil fertility and fertilizer effect was made by giving the estimate coefficient for each quantitative index and for each group of qualitative index significantly selected by MLR. Estimation for soil fertility factors and fertilizer effects by independent variables was better by MLR than single regression showing gradually improvement by adding chemical properties, quantitative indexes and qualitative indexes of GIS. Consequently, it is assumed that this approach by MLR with quantitative and qualitative indexes was available as an evaluation model of soil fertility and recommendation of optimum fertilization for tobacco field.

  • PDF