• Title/Summary/Keyword: soil total carbon

Search Result 372, Processing Time 0.03 seconds

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.

Assessment of Ecosystem services under changing climate in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.148-148
    • /
    • 2019
  • The 2006 Millennium Ecosystem Assessment (MA) defines ecosystem services (ES) as "the benefits people obtain from ecosystems". Identifying where ES originates, whom it benefits and how it is changing over a period of time is critical in rapidly developing country like Nepal, where the risk of ES loss is high. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield, Soil loss and Carbon sequestration computation and evaluation in Bagmati Basin of Nepal. As Bagmati Basin incorporates capital city Kathmandu of nepal, land use change is significant over decades and mapping of ES is crucial for sustainable development of Basin in future. In this regard, the objectives of this study are 1) To compute the total and sub-watershed scale water yield of the basin, 2) Computation of soil loss and sediment retention in the basin, and 3) Computation of carbon sequestration in the basin. Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute Ecosystem services. The scenario of ES in two periods of time can be referenced for various approaches of prioritization and incorporation of their value into local and regional decision making for management of basin.

  • PDF

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Boryeong City, Chungcheongnam-do

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Yoon Su;Park, Mi Jeong;Jung, Kang Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • The objectives of this study were to investigate soil chemical characteristics for forest rehabilitation and suggest management in abandoned coal mine areas in Boryeong City, Chungcheongnam-do. Total study sites were seven sites, and soil properties analyzed were soil pH, total organic carbon (TOC), total-N, C/N ratio, and available $P_2O_5$ (A.v. P). Average soil pH (range) was 5.9 (4.5~7.0). Three study sites (Samgwang, Shinsung1, and Shimwon1) showed lower soil pH than standard (pH 5.6~7.3) of Korea Industrial Standards (KS) for abandoned coal mine forest rehabilitation. Average contents of TOC, and total-N were 1.5% (0.1~4.7%), and 0.10% (0.03~0.23%), respectively. Five study sites where the collapsed time was less than 10 years (Wangjashingang, Wonpoong, Samgwang, Shinsung1, and Shinsung2) showed lower TOC level than standard of KS (more than 1.2%). Wangjashingang, Wonpoong, Samgwang, and Shinsung1 showed lower level of total-N than standard of KS (more than 0.09%). C/N ratio of six study sites except Shimwon1 was out of proper range (15:1~30:1). Average A.v. P (range) was $20.7mgkg^{-1}$ (4.8~63.1), less than other abandoned coal mine fores rehabilitation areas in Mungyong City, and Hwasun-gun. TOC, total N and A.v. P increased with elapsed time from forest rehabilitation, while other soil properties did not show distinct pattern. Betula platyphylla was planted in Samkwang and Sinsung where soil pH was less than KS standard. Because the growth of Betula platyphylla can be limited in acid soil, it is necessary to neutralize soil pH to proper level with some soil amendment such as lime or shell of oyster. Furthermore, TOC, total-N and A.v. P in early stage of forest rehabilitation showed lower level than proper to vegetation growth. Therefore it needs continuous monitoring of soil characteristics and fertilization for vegetation growth and influx from surrounding forest in early stage of rehabilitation.

Soil Chemical Properties - Variation with Altitude and Forest Composition: A Case Study of Kedarnath Wildlife Sanctuary, Western Himalaya (India)

  • Malik, Zubair A.;Haq, Shiekh Marifatul
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • The present study was carried out to evaluate the chemical properties of soil in relation to forest structure and composition at different altitudes (900-2,600 m asl) in a part of Western Himalaya. The composite soil samples were taken from three (viz. upper, middle and lower) depths. The soils of the whole study area were acidic in nature (pH=4.90-5.51). Contents of Nitrogen (N), Phosphorus (P), Potassium (K), Carbon (C) and soil organic matter (SOM) showed much fluctuation during different seasons of year. Nitrogen content showed significant positive correlations with altitude (r=0.924, p<0.05) and different community parameters like species diversity (r=0.892, p<0.01) and species richness (r=0.941, p<0.05). Phosphorus exhibited direct correlations with carbon (r=0.637) while weak negative correlations with different community parameters like species richness & diversity, total basal cover (TBC), density and canopy cover. Carbon content and hence SOM showed direct correlations with Nitrogen (r=0.821, p<0.01); Phosphorus (r=0.637, ns) and Potassium (r=0.540, ns). But no significant relationship was observed between K content and species richness (p=0.30, r=-0.504); between K content and species diversity (p=0.14, r=-0.672); between P content and species diversity (p=0.29, r=-0.513) and species richness (p=0.23, r=-0.575). Among the different soil nutrients, only N showed a significant positive correlation with altitude while all others exhibited negative (but non-significant) correlation with it. The study revealed that the chemical properties affect and are reciprocally affected by forest structure and composition and that N rich soils of higher altitudes are best for the growth and development of forests.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.

Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard

  • Kwon, Hye Young;Jung, Ji Young;Kim, Ok-Sun;Laffly, Dominique;Lim, Hyoun Soo;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.461-476
    • /
    • 2015
  • Global warming has accelerated glacial retreat in the high Arctic. The exposed glacier foreland is an ideal place to study chronosequential changes in ecosystems. Although vegetation succession in the glacier forelands has been studied intensively, little is known about the microbial community structure in these environments. Therefore, this study focused on how glacial retreat influences the bacterial community structure and its relationship with soil properties. This study was conducted in the foreland of the Midtre Lovénbreen glacier in Svalbard (78.9°N). Seven soil samples of different ages were collected and analyzed for moisture content, pH, soil organic carbon and total nitrogen contents, and soil organic matter fractionation. In addition, the structure of the bacterial community was determined via pyrosequencing analysis of 16S rRNA genes. The physical and chemical properties of soil varied significantly along the distance from the glacier; with increasing distance, more amounts of clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from homogeneous to heterogeneous structure along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

A Study of Accumulated Ecosystem Carbon in Mt. Deogyusan, Korea (덕유산의 생태계 탄소축적량 산정에 관한 연구)

  • Jeong, Seok-hee;Eom, Ji-young;Jang, Ji-hye;Lee, Jae-ho;Cho, Koo-hyun;Lee, Jae-seok
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.459-467
    • /
    • 2015
  • Understanding of a carbon storage in a regional scale ecosystem is a very important data for predicting change of global carbon cycle. Therefore, the real data collected in the various ecosystems are a very useful for enhancing accuracy of model prediction. We tried to estimate total accumulated ecosystem carbon in Deogyusan National Park (DNP) with naturally well preserved ecosystem. In DNP, vegetations were classified to four main communities with Quercus mongolica community (12,636.9 ha, 54.8%), Quercus variabilis community (2,987.0 ha, 13.0%), Pinus densiflora community (5,758.0 ha, 25.0%), and Quercus serrata community (402.9 ha,1.7%). Biomass and soil carbons were estimated by the biomass allometric equations based on the DBH and carbon contents of litter and soil (0~30 cm) layers collected in 3 plots ($30cm{\times}30cm$) in each community. The biomass and soil carbons were shown as high value as 1,759,000 tC and 7,776,000 tC, respectively, in Quercus mongolia community in DNP area. In Quercus mongolica, Quercus variabilis, Quercus serrata, Pinus densiflora communities, the accumulated ecosystem carbon were shown 9,536,000 tC, 1,405,000 tC, 147,000 tC, 346,000 tC, respectively. Also, the total ecosystem carbon was estimated with 11,434,000 tC in DNP.

Piloting the FBDC Model to Estimate Forest Carbon Dynamics in Bhutan

  • Lee, Jongyeol;Dorji, Nim;Kim, Seongjun;Wang, Sonam Wangyel;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • Bhutanese forests have been well preserved and can sequester the atmospheric carbon (C). In spite of its importance, understanding Bhutanese forest C dynamics was very limited due to the lack of available data. However, forest C model can simulate forest C dynamics with comparatively limited data and references. In this study, we aimed to simulate Bhutanese forest C dynamics at 6 plots with the Forest Biomass and Dead organic matter Carbon (FBDC) model, which can simulate forest C cycles with small amount of input data. The total forest C stock ($Mg\;C\;ha^{-1}$) ranged from 118.35 to 200.04 with an average of 168.41. The C stocks ($Mg\;C\;ha^{-1}$) in biomass, litter, dead wood, and mineral soil were 3.40-88.13, 4.24-24.95, 1.99-20.31, 91.45-97.90, respectively. On average, the biomass, litter, dead wood, and mineral soil accounted for 36.0, 5.5, 2.5, and 56.0% of the total C stocks, respectively. Although our modeling approach was applied at a small pilot scale, it exhibited a potential to report Bhutanese forest C inventory with reliable methodology. In order to report the national forest C inventory, field work for major tree species and forest types in Bhutan are required.

A Study on Change of an Accumulated Organi Matter Contents According to Successional Stage on Temperate Grassland (천이계열에 따른 온대초원의 유기물량 축적량 변화)

  • Lee Jae-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.381-386
    • /
    • 2004
  • To develop accurate and predictive global carbon cycle models, it is important to understand the change of accumulated carbon for many ecosystems according to successional stage. In this study, I measured total biomass, litter and soil organic matter contents through an aerial photo and field observation. As a result, accumulated organic matter contents per unit area (kg $m^{-2})$ of three communities composed at grassland were 7.00 kg $m^{-2}$, in Solidago altissima community, 9.18 kg $m^{-2}$, in Imperata cylindrica community, and 12.68 kg $m^{-2}$, in Miscanthus sinensis community, respectively. Accumulated total organic matter contents was high in Miscanthus sinensis community at later succession stage but soil carbon was low. In Miscanthus sinensis community, highly accumulated organic matter contents was resulted from increasing of biomass comparison with that of the other two communities. The pattern of accumulated organic matter contents was changed by changing of the dominant community due to progressing in succession. The accumulated carbon in temperate grassland will be increased with progressing in succession.