• Title/Summary/Keyword: soil state

Search Result 1,217, Processing Time 0.027 seconds

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Natural Emission of Nitric Oxide from Agricultural Soil of Corn-field in Eastern North Carolina

  • Kim, Deug-Soo;Paul Roelle;Viney P. Aneja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.31-43
    • /
    • 1995
  • Natural emissions of NOx from soils were measured at an agricultural corn field during 3 weeks of growing season in summer (from May to June) 1995. This experiment was conducted in an effort to characterize the role of soil NOx on tropospheric ozone formation in rural atmosphere, and understand the natural NOx emission mechanism with respect to soil parameters. NO fluxes were ranged from 3.1 ng Nm$^{-2}s^{-1}$ to 259.0 ng Nm$^{-2}s^{-1}$, and average NO flux during experimental period was found to be 47.6 $\pm$ 50.6 ng Nm$^{-2}s^{-1}$ with 732 number of data. Diurnal variation of NO flux was shown clearly with daytime maximum and nighttime minimum. NO fluxes were correlated with soil temperature. Exponential soil temperature dependency of NO fluxes was found with 0.0160$^{circ}C^{-1} of k and r^2=0.508$, which agrees well to the value estimated at corn fields in eastern United States. The significant increases of NO fluxes from agricultural soil were detected after applying N fertilizers to soil. THe mechanisms attributed to this are enhanced biological nitrification and denitrification. In the view of rural ozone formation, the roles of natural NO emissions are very essential, especially in NOx - limited region such as southern United States.

  • PDF

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

Static Behavior of Gravelly Soil with State Parameter (상태정수에 따른 자갈질 흙의 정적거동)

  • Heo, Seungbeom;Yoon, Yeowon;Kim, Woosoon;Kim, Jaeyoun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.5-14
    • /
    • 2010
  • Recent researches on the behavior of gravelly soils have been focused mainly on the relative density or on the gravel content. And some researchers presented the liquefaction behavior based on the relative density whereas others based on the gravel content of gravelly soil. However the relative densities vary with gravel content and relative density is not enough to fully express the behavior of gravelly soils. Therefore in this research state parameter which considers void ratio and effective confining pressure is introduced and Steady State Line(SSL) of gravelly soils for various gravel content are determined by undrained triaxial tests in order to express the behavior of gravelly soils. From the research the position of SSL moved downward with gravel content. And the same density of soil showed dense sand behavior or loose sand behavior depending upon the confining pressure. Especially relative density 80% of gravelly soil showed loose sand behavior under high confining pressure. However the gravelly soils with similar state parameters showed similar stress behaviors. It can bee seen that state parameter is useful tool to evaluate undrained behavior of gravelly soils. Also state parameter and undrained strength showed good correlations.