• Title/Summary/Keyword: soil shear strain

Search Result 266, Processing Time 0.026 seconds

Finite element method adopting isoparametric formulation of the quadrilateral elements (등매개변수 사변형요소를 적용한 유한요소해석법)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.205-212
    • /
    • 2018
  • In order to overcome shortcomings of commercial analysis program for solving certain geotechnical problems, finite element method adopting isoparametric quadrilateral element was selected as a tool for analyzing soil behavior and calculating process was programmed. Two examples were considered in order to verify reliability of the developed program. One of the two examples is the case of acting isotropic confining pressure on finite element and the other is the case of acting shear stress on the sides of the finite element. Isoparametric quadrilateral element was considered as the finite element and displacements in the element can be expressed by node displacements and shape functions in the considered element. Calculating process for determining strain which is defined by derivatives using global coordinates was coded using the Jacobian and the natural coordinates. Four point Gauss rule was adopted to convert double integral which defines stiffness of the element into numerical integration. As a result of executing analysis of the finite element under isotropic confining pressure, calculated stress corresponding to four Gauss points and center of the element were equal to the confining pressure. In addition, according to the analyzed results for the element under shear stress, horizontal stresses and vertical stresses were varied with positions in the element and the magnitudes and distribution pattern of the stresses were thought to be rational.

A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses (현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구)

  • Kim, Sung-Hee;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, a series of full-scale field tests on prebored and precast steel pipe piles and the corresponding numerical analysis have been conducted in order to study the characteristics of pile load-settlement relations and shear stress transfer at the pile-soil interface. Dynamic pile load tests (EOID and restrike) have been performed on the piles and the estimated design pile loads from EOID and restrike tests were analysed. Class-A type numerical analyses conducted prior to the pile loading tests were 56~105%, 65~121% and 38~142% respectively of those obtained from static load tests. In addition, design loads estimated from the restrike tests indicate increases of 12~60% compared to those estimated in the EOID tests. The EOID tests show large end bearing capacity while the restrike tests demonstrate increased skin friction. When impact energy is insufficient during the restrike tests, the end bearing capacity may be underestimated. It has been found that total pile capacity would be reasonably estimated if skin friction from the restrike tests and end bearing capacity from the EOID are combined. The load-settlement relation measured from the static pile load tests and estimated from the numerical modelling is in general agreement until yielding occurs, after which results from the numerical analyses substantially deviated away from those obtained from the static load tests. The measured pile behaviour from the static load tests shows somewhat similar behaviour of perfectly-elastic plastic materials after yielding with a small increase in the pile load, while the numerical analyses demonstrates a gradual increase in the pile load associated with strain hardening approaching ultimate pile load. It has been discussed that the load-settlement relation mainly depends upon the stiffness of the ground, whilst the shear transfer mechanism depends on shear strength parameters.

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF