• Title/Summary/Keyword: soil respiration rates

Search Result 44, Processing Time 0.019 seconds

Applicability of the Multi-Channel Surface-soil CO2-concentration Monitoring (SCM) System as a Surface Soil CO2 Monitoring Tool (다채널 지표토양 CO2 농도 모니터링(SCM) 시스템 개발 및 적용성 평가 연구)

  • Sung, Ki-Sung;Yu, Soonyoung;Choi, Byoung-Young;Park, Jinyoung;Han, Raehee;Kim, Jeong-Chan;Park, Kwon Gyu;Chae, Gitak
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • Monitoring of $CO_2$ release through the ground surface is essential to confirm the safety of carbon storage projects. We conducted a feasibility study of the multi-channel surface-soil $CO_2$-concentration monitoring (SCM) system as a soil $CO_2$ monitoring tool with a small scale injection test. The background concentrations showed the distinct diurnal variation. The negative relation of $CO_2$ with temperature and the low $CO_2$ concentrations during the day imply that surface-soil $CO_2$ depends on photosynthesis and respiration. After 4.2 kg of $CO_2$ injection (1 m depth for 29 minutes), surface-soil $CO_2$ concentrations increased in the all five chambers, which were located less than 2.8 m of distance from each other. The $CO_2$ concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data from Chamber 2 and 5 with low increase rates were used for statistical analyses. Coefficient of variation for 30 minutes ($CV_{30min}$.) is efficient to determine a leakage signal, with reflecting the fast change in $CO_2$ concentrations. Consequently, SCM and $CV_{30min}$ could be applied for an efficient monitoring tool to detect $CO_2$ release through the ground surface. Also, this study provides ideas for establishing action steps after leakage detection.

Effects of Polymer Coating on Seed Vigour in Rice (벼 종자의 Polymer 피복처리가 종자세에 미치는 영향)

  • 이성춘;정춘화;김진희;송동석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.274-285
    • /
    • 1996
  • These experiments were conducted to evaluate the effects of seed coating with ten environmentally acceptable polymers, on germination percentage, water uptake, respiration, emergence and seedling growth characteristics. The water absorption of polymer-coated seeds in saturation condition was highest in klucel and lowest in polyvinyl pyrrolidone(PVP), and that in water was highest in klucel and lowest in maltrin. Respiration rates of polymer-coated seeds in Hwayoungbyeo and Ilpumbyeo were lower than those of none-coated seeds, and those in Daecheongbyeo and Jinmibyeo were higher than that of none-coated seeds, and those of sepiret coated seeds were higher than PVP coated seeds. The germination polimer-coated seed was reduced by one percentage by coating with seed coating machine. Germination percentage was not affected by any of polymer coating in high quality seed, but there were significant effects in low quality seed coating with waterlock, surelease 46 and sepiret significantly reduced germination some cultivars. Germination percentage after accelated ageing treatment were slightly higher most of polymer-coated seeds than in none-coated seeds, but those of sepiret-and klucel-coated seeds were lower significantly. Germination percentage of seeds coated with daran 8600, rnaltrin, sacrust and opadry were enhanced slightly under cold test other polimers reduced germination. The seedling height of polymer-coated seeds were longer than those of none-coated seeds, but those of waterlock, PVP and maltrin coating seeds were shorter, seedling hight was shortened by polimer coating under cold test. Polymer-coated seeds showed higher emergence percentage, shorter emergence time in field condition. The highest emergence percentage and the shortest emergence time was shown at 90% soil moisture content.

  • PDF

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.